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Abstract: A fault detection method based on incremental locally linear embedding (LLLLE) is presented to improve

fault detecting accuracy for satellites with telemetry data. Since conventional LLE algorithm cannot handle incre-

mental learning, an incremental LLE method is proposed to acquire low-dimensional feature embedded in high-di-

mensional space. Then, telemetry data of Satellite TX-I are analyzed. Therefore, fault detection are performed by

analyzing feature information extracted from the telemetry data with the statistical indexes T® and squared predic-

tion error(SPE) and SPE. Simulation results verify the fault detection scheme.
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0 Introduction

Satellite engineering has been increasingly
critical in spacecraft research™’. Satellites in orbit
transmit telemetry data to identify satellite run-

2l Significant

ning status and implement tasks
improvements in space technology inevitably lead
to more complex behavior of satellites, which in
turn brings about higher demand for reliability.
Meanwhile, large-volume telemetry data make da-

difficult.

fault diagnosis encounters significant challenges

ta analysis Conventional data-driven
when applied to satellites.

Since fault information is contained in satel-
lite telemetry data, quite a number of fault diag-
nosis methods have been proposed based on the
features extracted from the data. Yu et al. devel-
(FDD)

scheme by combining principal component analy-

sis ( PCA)

oped a fault detection and diagnosis

with support vector machines
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(SVRs)H,

PCA do not work well with nonlinear data. Fuji-

However, feature extraction based on

maki et al. proposed a novel "knowledge-free” a-
nomaly detection method for spacecrafts based on
kernel feature space (KFS) and directional distri-
bution, which employed normal historical teleme-
try data to construct a system behavior model and
then monitored current system running by compa-
ring incoming data with the model™!. However,
the selection of the consistency of appropriate ker-
nels for heterogeneous multidimensional data is
inconvenient for its applications. Yang et al.
presented several data-mining methods based on

data-driven FDD for

which showed great potential™!.

satellite telemetry data,
Recently, sever-
al novel feature extraction methods based on man-
ifold learning have been reported for handling
nonlinear high-dimensional data. A new approach
was adapted for intelligent fault diagnosis based

on locally linear embedding (LLE)™, a kind of
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manifold. An extended LLE algorithm was also

introduced in Ref. ™. Manifold learning has been

demonstrated in various applications such as face
recognition™ and machinery fault diagnosis!.

Most of these algorithms are operated in a
batch mode,i. e. , all data are available for train-
ing. Nevertheless, they fail to provide a model or
formula to extract features for sequentially incom-
ing data. When new data arrive, one needs to exe-
cute the entire algorithm again with original data
augmented by new data. This restricts these algo-
rithms' applications, especially in a changing and
dynamic environment.

Information can be ascertained with new in-
Various incremental

coming incremental data.

manifold learning methods have been pro-
posed” . We introduce Satellite TX-I, as the re-
search object, with telemetry data. It is unrealis-
tic to expect to directly grasp the features of these
data because of complex working conditions. To
extract features of parameters in telemetry data,
an incremental LLE algorithm is employed here-
in. Then, the anomalies hidden in the data can be
detected by wusing statistical indexes T? and
squared prediction error (SPE) and SPE acting on

the extracted features.

1 Preliminary Overview

How to extract useful information from mas-
sive data in this age is a big challenge for data
analysis. In the past decades, manifold learning,
a new type of feature extraction method, was de-
veloped. Compared with other linear methods,
manifold learning provides an effective way to
handle nonlinear data. The LLE algorithm is an
unsupervised manifold learning method that ex-
tract features based on geometric intuition.

1.1 Conventional LLE

Given a data set X={x;€R"”,i=1,2,:+,N}
in a high-dimensional input space, the LLE algo-
rithm is used to regain the low-dimensional repre-
which is presented as Y =
{(y;€ER?,i=1,2,+,N} (d<D).

metric intuition, the LLE algorithm aims to pre-

sentation of X,

Based on geo-

serve the local structure of the high-dimensional

data while mapping the original data into low-di-
mensional space. In summary, the LLE algorithm
mainly contains three steps as follows:

Step 1
1,2, ,k} for each x, € X;;

Step 2 Reconstruct weights w;; of x} to min-

Find the # nearest neighbors {x},j=

imize the reconstruction error of x} and x;;

Step 3 Compute the low-dimensional embe-
ded Y of X without changing the reconstruction
weights obtained in Step 2.

In Step 1, the Euclidean distance is always
taken as the criteria to select £ nearest neighbors
x; for x;. Then, the local geometry of the data
can be characterized by linear coefficients wy ,
which are acquired by reconstructing the data
points from their own % neighbors.

In Step 2, the optimal weights can be ob-
tained by solving the constrained least-squares
problem as

N k
W =arg rnwin<2 % — > w,x; Hz) (D

i=1 j=1

k

where Ew,j =1. In addition, W, =[w, »wy, ",
ji=1

w;y | stands for the ith row vector of the recon-

struction weight matrix W. Moreover, w; = 0
considering that x} does not belong to the neigh-
bor of x;. The whole N X N weight matrix W for
the input data X will be obtained based on steps
1—2.

In step 3, the dimensionality reduction is uti-
lized by retaining the same reconstruction weights
between the points and the corresponding neigh-
bors. Each high-dimensional input x; is mapped
into a low-dimensional output y;, representing
global internal coordinates in the manifold, which
can be accomplished by minimizing the embedding
cost function

N k
Y= mym(z Iy — D wiyi |
i=1

i=1

) 2)

N

where %Zy,y? =1, Ey, =0, and I stands for

i—1 i—1

an identity matrix. Note that the embedding is
calculated by the reconstruction weights without
involving original data x; in the constrained equa-
tion. In other words, the embedding is deter-
mined entirely by the geometric information enco-

ded by the weights. To solve the optimization
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problem, a new N X N sparse and symmetric ma-
trix M = (I—W)"—W) 1is defined. Further-
more, the d-th coordinate output by LLE corre-
sponds to the (d+ 1) th smallest eigenvector of
M. Thus, for efficiency and convenience, the low-
dimensional embedding calculation is finally trans-
lated into a matrix eigenvector computation,.
However, the LLE algorithm performs di-
mensionality reduction in a batch mode, which
means that the LLE fails to provide an explicit
way of mapping the high-dimensional space into
the embedded feature space. When new data
points arrive, one has to rerun the LLE algorithm
to achieve the low-dimensional features with an
augmented data set. Considerating some special
cases, like large data sets with high dimensionali-
ty in a dynamic environment, the LLE algorithm
seems to be less attractive because it fails to ac-
commodate new data. Thus, the incremental LLE

(I-LLE) algorithm gradually becomes interesting

and appealing.
1.2 Incremental LLE

Many attempts have tried to tackle the prob-
lems mentioned above, including local linear re-
gression ( LLR)M¥ and local linear projection
(LLP)™, Assuming that the embedded manifold
is locally linear, LLR and LLP are conducted to
reveal implicit projection between high-dimension-
al space and embedded feature space. The implemen-
tation of LLP algorithm is presented in Table 1.

Table 1 Implementation of LLP

Xnew
Input . . .
! New high-dimensional sample

Ynew
d dimensional embedded coordinate

Interface
Output

Step 1 Based on the Euclidean distance met-
rices, one finds the £ nearest neighbors x, ,
X5 5+, X, for new sample x,., in high-dimen-
sional space;

Step 2 By solving a linear least-squares re-
gression problem, a mapping matrix A satis-
fying Y = AX can be obtained, where A =
Llaisas,ra, " ERP, X=[x,x5, ",
xk]’ and Y= [y1 s Youtt
low-dimensional coordinate corresponding to

Procedure

, y: | represent the

the % nearest neighbors of x,., ;

Step 3 Compute d dimensional embedding by
means of the following equation

View =AX ey,

In Step 2, the linear least-squares regression

problem can be presented as
k
A=argmin(2 | y; — Ax, H7) (3
A Vi

With the aid of LLP, one can directly calcu-
late the low-dimensional representation without
repeatedly carrying out the complex LLE algo-
rithm. Eq. (3) shows that different mapping ma-
trices are developed for each new sample, which
can ensure the accuracy of the calculated embed-
ding to a certain extent. Furthermore, a fixed
mapping matrix can be used because the new sam-
ples are geometrically similar. Then, the LLP al-
gorithm can be seen as LLR, which only uses the
whole structure of the data set without finding 4
nearest neighbors for a new incoming sample.
Namely, the solid mapping matrix A is calculated
with the original training set X and the associated
low-dimensional coordinates Y and Y=AX.

However, LLP is to find low-dimensional
representations of the new data without a feed-
back loop. By extending the neighbors directly,
the dimensionality reduction algorithm cannot
guarantee optimal results. In other words, not
only the low-dimensional embedding of the new
incoming data but also the effects of these data on
the original data set should be taken into account.
In this paper, novel I-LLE is presented to map
new samples into the low-dimensional feature
space with a feedback loop.

Given the training set X={x; € R”,i=1,2,
-, N} and the weight matrix W, the £ nearest
neighbors of x; can be presented as {X;1), s Xi2) s***»
X:«» ) » denoting Alas the distance between x; and
x;. Assume that the nearest neighbors are listed
in order, then AV <CAM® < -+<{A® | The task of
I-LLE is to update the weight matrix W and the
cost function M mentioned in Section 1. 1 without
rerunning the entire LLE algorithm. The proce-
dure of I-LLE can be accomplished through two

sequential steps as follows:

Step 1 Update the weight matrix W with the
help of the Euclidean distance criteria;
Step 2 Recompute the cost function M cor-

responding to the change of W.
Given a new incoming sample X,.,, find its &

nearest neighbors and compute the corresponding
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weight vector, denoted as W,,. Step 1 is de-
scribed in Table 2.

Table 2 Weight matrix update

Function Weight matrix update
(1) Compute the distances between the new
sample and each data point in the original
set, denoting A™ (i =1,2,++, N), as the
distances;
(2) For each point x;, if AM <ZAi®, then
the neighbors of x; should be updated as
Procedure

{Xic1y sXic2) »*** s Xit) +Xnew ;- Put  the new
neighbors in an ascending order { x';),
x' i s X i b. Simultaneously, the up-
date of the corresponding weight vector for
x; should be executed, following procedure

(.

Only the changed neighbors have been con-
sidered when updating the weight matrix, which
greatly improves the efficiency of the I-LLE algo-
rithm. From a mathematics perspective, proce-
dure (1) focuses on x;, whose neighbors have
been updated. Finally, a new (N+1) X (N-+1)
weight matrix W' is obtained from updating the
weight matrix W augmented by the weight vector
Wiew.

Determining How to facilitate the new weight
matrix to find low-dimensional representation nat-
urally promotes research on cost matrix M'. As
mentioned in Section 1. 1, the calculation of the
cost function can be "translated” as

M=d-W)"d—w) 4
Since only a local part of the weight matrix is up-
dated, one can calculate the cost function in terms
of the mutative points. Compared to the conven-
tional LLE, I-LLE greatly improves the efficiency
of calculating a new embedding when an existing
data set is being slightly modified. Furthermore,
it considers not only the explicit mapping from
samples into embedded space but also the effects
of the new samples on the original data set.

I-LLE provides a way to acquire low-dimen-
sional embedding of the samples without entirely

rerunning the LLE algorithm.

2 Feature Extraction for Telemetry
Data

Since Satellite TX-I transmit large amounts

of telemetry data to ground stations every day, it

is an realistic to grasp the embedded features
through visualization. However, the I-LLE algo-
rithm can exposed hidden features of the data only
if specific cases are taken into account.

2.1 Basic features of telemetry

2.1.1

A satellite travels in its orbit and transmits

Observable area

data to ground stations in a specified area. Telem-
etry data of Satellite TX-I are from an arc area in
orbit, e. i. , the so-called observable area. The
observable area is so small that the observation
time is very limited. Therefore, only finite telem-
etry data are sent to ground stations. Further-
more, the cycle period of the observable area can
be known only if the satellite is operated in a nor-
mal model.

2.1.2 Rising orbit and descending orbit

The wholel orbit around the Earth can be di-
vided into two parts: Rising orbit and descending
orbit, which correspond to the local nighttime and
daytime, respectively. In terms of latitude, a sat-
ellite in rising orbit moves from south to north;
while the opposite moving tendency means the
satellite in descending orbit. Moreover, these two
tendencies have different effects on system param-
eters. Even the same parameters may present dif-
ferent features in different orbit regions. In this
study, parameters related to the satellite attitude
control system are taken into account to demon-
strate the effects of the orbit tendencies.

For Satellite TX-I, the telemetry data of
three parameters, pitch angle, pitch velocity, and
x axis of magnetometer A, are presented in
Fig. 1. Fig. 1 implies the effects of the couple or-
bits on the parameters. Furthermore, the single
orbit (rising or descending) remains for a short
period for each parameter as the small observable
area mentioned in subsection 2. 1. 1. Meanwhile,
the curves in Fig. 1 are unsmooth because of the
noise in telemetry data. For Satellite TX-I, the
realtime telemetry data points are transmitted to a
ground station every 2 s. In Fig. 1, the descend-
ing orbit of the pitch angle covers almost 286

points. In other words, the descending orbit re-
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Fig. 1  Telemetry data of different parameters on 1

January 2012

mains for almost 10 min, which can be calculated
from the detailed time shown in Fig. 1.

The features of the couple orbits perfectly
demonstrate that parameters hold various features
in different orbits, which should be considered for
future feature extraction.

2.1.3

As they revolve around the Earth, satellites

Illumination

are not always exposed to sunlight, which can af-
fect the operation mode. Specifically, the energy
working condition on the shady side significantly
differs from that in the illumination region. As an
example, the charging current and the discharge
current of TX-I on 1 January 2012 are shown in
Fig. 2. Charging current runs beyond zero under
the illumination condition, while the discharge
current stays around zero, which illustrates that
illumination 'perturbs’ the working condition of
the energy system in satellites. To comprehend
the energy system of Satellite TX-I, the solar cell
current on the same day is also presented in Fig. 2.
Therefore, features of the parameters are
greatly affected by working conditions and envi-
ronment. It is possible to capture the feature of a
single parameter from corresponding telemetry
data but the fact that hundreds of satellite param-
eters remain to be analyzed makes this single-pa-
rameter-based analysis impractical. Furthermore,
several parameters are needed to study a subsys-

tem, including a satellite attitude control system,
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Fig.2 Telemetry data of current on 1 January 2012

which greatly increases the difficulty. Thus, the
I-LLE algorithm is employed to perform feature

extraction.
2.2 Application of I-LLE to feature extraction

Feature extraction mainly in clude two as-
pects: (1) Dimensionality reduction, which pro-
vides the low-dimensional presentation for the
high-dimensional space; and (2) the preservation
of the main features. In other words, the main
features of the data are retained, while the redun-
dant information should be ignored or discarded.
Therefore, feature extraction plays an important
role in data analysis. Furthermore, feature ex-
traction should be performed by considering that
the real-time telemetry data are affected by work-
ing conditions.

In this section, the telemetry data of some
parameters are used as " guinea pigs’ to validate
the I-LLE algorithm. To avoid losing generality,
five parameters related to the satellite attitude
from 1—75 January 2012, are employed. Addition-
ally, only one kind of the orbits (the rising or the
descending) are considered due to the feature
differences between the two orbits. However, the
I-LLE algorithm can not be operated until it com-
plete some preliminary treatments on the teleme-
try data. First of all, it must remove the outliers
falling short of the overall trend. Then, filtering
method is highly recommended as it can conse-

quently improves the feature extraction efficiency.
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In addition, normalization for different units of
different parameters is in great demand.
The pretreated 276 data points on 1 January

2012 are used as the training data, while the data

points from 2—5 January 2012, are used as the
testing data, which are shown in Fig. 3(a).

The ILLE-based feature extraction should set
two parameters in advance: Reduced dimensional-
ity (intrinsic dimensionality) d and the number of
neighbors k. In addition, the effects of these two
parameters should not be ignored. Take d as an
example. If d is set too large, the mapping of I-
LLE will contain a great deal of redundant infor-
mation and enhance the noise; on the contrary, a
small d may lead to embedded data overlapping.
The selection of these parameters is beyond the
scope of this paper. Several methods of determi-
ning the parameters have been provided™ "1,
We set d=3 and #=12. To directly compare the
I-LLE algorithm with the conventional LLE algo-
rithm, the dimensionality reduction results for the
telemetry data from 2—5 January 2012 are shown

in Fig. 3.
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Data point
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mensionality reduction results

Fig. 3 shows that the I-LLE algorithm can al-
so reduce dimensionality like the conventional
one. As discussed in Section 2, I-LLE performs

the feature extraction with a feedback loop, which

greatly improves the accuracy of the extraction.
The accuracy of the conventional LLE algorithm
can be somewhat improved by changing its param-
eters, like £ without a feedback loop while neglec-
ting performance efficiency. The difference is that
the I-LLE algorithm only takes the changed part
into account without running the entire algo-
rithm, which improves execution efficiency. And
using feedback loop directly affects the accuracy of
Meanwhile, the I-LLE algo-
rithm has the potential to map the high-dimen-

feature extraction.

sional fault samples into embedded low-dimen-
sional space with obtaining the fault information,
which finally can be used as a tool to perform fault

detection.

3 Fault Detection

Unlike conventional model-based fault detec-
tion methods, the I-LLE algorithm is good at sol-
ving data-based problems. In many cases, the re-
ality model of the samples was located in a low-di-
mensional manifold embedded in the high-dimen-
sional sample space'™'™. From a gecometry per-
spective, the data belonging to the same fault
class lie in or near a manifold embedded in the

U8 1n other words, with

high-dimensional space
the help of the feature extraction of I-LLE, the
fault information can finally be enveloped in the
Thus,

based on an I-LLE algorithm is presented. By

embedded space. a new fault detection
capturing the embedded manifold feature, the al-
gorithm maps the high-dimensional space into a
low-dimensional embedded space to detect faults.
To visualize the fault information, the statistical

indexes T? and SPE and SPE are employed herein.
3.1 Fault detection scheme

As mentioned previously, fault detection is
performed in the embedded space by using the sta-
tistical indexes T? and SPE and SPE. The main
problem is how to use these indexes to monitor
the embedded space. At the macroscopic level,
the I-LLE algorithm is a kind of modeling prob-
lem. Thanks to the new incoming data, I-LLE
continually updates its original database (seen as
the model), starting with the training data.

Meanwhile, the statistical indexes T? and SPE and
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SPE should be introduced to sense the variation of
the new incoming samples and use the normal op-
erating condition model.

SPE is adopted to measure the noisy part of
the process information and the variability devia-
ting from the normal operating condition model,
which is also called the residual space. The calcu-
lation of SPE for a new incoming sample is pres-
ented as

SPE= || Xpeo —Xuew || 2 (5)
where X,.. represents the reconstruction of the
sample Xx,.. Moreover, Xow = ATA x,.., where
A=YXT (XX")™', which can be calculated from
Eq. (3)M*,

is used to measure the variation within the model

The popular Hotelling's T? statistic

space. Given the embedded data y,., of the input
sample x,., in the ['-LLE model space, the statistic
associated with x,., is measured by

T = YA Yo 6)

where A is the sample covariance matrix of Y in
the normal operating condition that is

YYT
A=y )
The statistical indexes T? and SPE and SPE

not only ensure the use of the normal model for I-

LLE but also promote the fault detection scheme
that is presented as follows:
Step 1

tion data X, = {x; ,x,,*"

Collect the normal operating condi-
.oy} as the training data
and filter and normalize X, ;

Step 2 Perform the conventional LLE algo-
rithm on X, to obtain the embedded low-dimen-
sional coordinates Y, ;

Step 3 Approximate the mapping matrix A,
that satisfies Y,=A,X, by using the LLLR method;

Step 4

ring and normalization should be conducted to ob-

Obtain the new incoming data; filte-

tain X,ew 3

Step 5§
with the help of the mapping matrix , A, i. e. ,
Yiw=A0X v 3

Step 6
and SPE and SPE for the new embedding and
present the fault detection result;

Step 7
performing the I-LLE algorithm with the normal

Conduct dimensionality reduction

Calculate the statistical indexes T°

Update the mapping matrix A, by

new data X, ;

Step 8 Repeat Steps 4—7.

It can be seen that the I-LLE algorithm is
performed on the new incoming data that are
taken to update the I-LLLE model. The database is
refreshed, and then the embedding space is upda-
ted. Undoubtedly, the mapping matrix will be re-
vised, which can ensure the accuracy of the di-
Meanwhile, the LLR

method is used herein because of the geometrical

mensionality reduction.
similarity of the telemetry data between different

dates.
3.2 Case Study

In this study, the telemetry data of Satellite
TX-T on 1 January 2012 are employed as the train-
ing set, which triggers the execution of the I'LLE
algorithm on the telemetry data from 2—5 January
2012. Moreover, only the data of the descending
orbit are adopted. The intrinsic dimensionality
=3 and the number of the neighbors £=12. To
verify the performance of the fault detection
scheme based on the I-LLE algorithm, numerical
simulations of different fault types are presented
in the following sections.

3.2.1 Case 1: Constant fault for pitch velocity
The constant bias occurs from 120 to 170
points of pitch velocity. To illustrate the I-LLE
algorithm, the statistical detection results are
shown in Fig. 4. Furthermore, Fig. 5 presents the
detection results based on the conventional LLE

algorithm.

Threshod
SPE variable

800 1000

(a) SPE statistic result

Threshold
T variable

) Mondd D i i
0 200 400 600 800
Data point
(b) T statistic result

1000

Fig. 4  Statistic detection results for constant fault

based on I-LLE algorithm
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SPE variable
Threshold

400 600 800
Data point
(a) SPE statistic result

1 000

T* variable
Threshold

600 800
Data point

(b) T statistic result

1 000

Fig. 5  Statistic detection results for constant fault

based on LLE algorithm

Fig. 4 shows that both T? and SPE and SPE
change over the threshold when fault information
is introduced. In addition, the false alarm rate
(FAR) and the missing alarm rate (MAR) for
these statistical indexes are given in Tables 3, 4.
The results based on LLLE, by contrast, do not
show a promising perspective. The corresponding
FAR and MAR are also given in Tables 3,4. Al-
though both algorithms can correctly detect the
fault information, the results based on LLE some-
times provide misleading data. Owing to the
effect of the feedback loop, the thresholds of the
statistical indexes in I-LLE are metabolic. In the
conventional LLE algorithm, there is no feedback
loop, which means that the database will not be
refreshed. Additionally, the LLR method, which
is used to find the mapping matrix, determines
the static thresholds for the statistical indexes be-

cause the training data are set.
Table 3 FAR and MAR of SPE statistic with constant fault

Algorithm type FA4R . MA.R.
(SPE statistic) /% (SPE statistic) / %
-LLE 2.148 4 0
LLE 23.471 4 0

Table 4 FAR and MAR of T statistic with constant fault

FAR MAR
(T? statistic) /% (T*? statistic) /%

Algorithm type

I-LLE 1.171 8 0
LLE 11.045 4 0
3.2.2 Case 2: Time-varying fault for pitch ve-

locity

Time-varying fault occurs from 120 to 170

points. The fault detection scheme based on the I-
LLE algorithm is applied to obtain the statistical
results presented in Fig. 6. Fault detection based
on the conventional LLE algorithm is shown in
Fig. 7. Intuitively, FAR and MAR of the statisti-
cal indexes for the algorithms are first provided in
Tables 5,6.

Table 5 FAR and MAR of SPE statistic with time-var-

ying fault

FAR MAR
(SPE statistic) /% (SPE statistic)/ %
I-LLE 5.664 1 2
LLE 23.511 3 18

Algorithm type

Table 6 FAR and MAR of T® statistic with time-varying

fault

FAR MAR
(T? statistic)/% (T? statistic)/ %
-LLE 5.078 1 4
LLE 10. 266 9 20

Algorithm type

Compared with Case 1, the time-varying
fault detection does not perform as well. Howev-
er, the statistical indexes based on the I-LLE al-
gorithm show great adaptability, while those
based on the conventional LLE algorithm remain
in a conservation position, which can also be seen

in Figs. 6,7.

SPE variabl
Threshold

200 400 600 800 1 000
Data point

(a) SPE statistic result

T’ variable
Threshold

200 400 600 800 1 000
Data point
(b) T statistic result

Fig. 6 Statistic detection results for time-varying fault

based on I-LLE algorithm

Fig. 6 shows that the indexes jump over their
associated threshold when the fault occurs and re-
turn to normal when the fault disappears. How-

ever, the performance of the fault detection based
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SPE variable
Threshold

400 600 800
Data point
(a) SPE statistic result

1 000

T* variable
Threshold

400 600 800
Data point
(b) T* statistic result

1 000

Fig. 7 Statistic detection results for time-varying fault

based on LLE algorithm

on LLE does not meet expectations, which can
both I-

LLE and LLE can complete fault detection tasks.,

determined from Tables 5, 6. Overall,

but I-LLE greatly improves detection accuracy.

4 Conclusions

A fault detection approach based on I-LLE is
presented. After a brief introduction of the telem-
etry data of Satellite TX-I, I-LLE is employed to
extract data features and capture the low-dimen-
sional embedding, which leads to the development
of fault detection scheme. Finally, fault detection
for the TX-I telemetry data based on the I-LLE
algorithm is carried out on the embedded low-di-
mensional space. To illustrate the potential of the
proposed scheme, simulations are provided.

However, the parameters of I-LLE, like in-
trinsic dimensionality, should be set in advance,
which will influence the fault detection perform-
ance. Therefore, the detailed selection of these

parameters is worthy of further study.
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