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Abstract: A novel multi-objective optimization algorithm incorporating vector method and evolution strategies, re-
ferred as vector dominant multi-objective evolutionary algorithm (VD-MOEA), is developed and applied to the
aerodynamic-structural integrative design of wind turbine blades. A set of virtual vectors are elaborately construc-
ted, guiding population to fast move forward to the Pareto optimal front and dominating the distribution uniformity
with high efficiency. In comparison to conventional evolution algorithms, VD-MOEA displays dramatic improve-
ment of algorithm performance in both convergence and diversity preservation when handling complex problems of
multi-variables, multi-objectives and multi-constraints. As an example, a 1. 5 MW wind turbine blade is subse-
quently designed taking the maximum annual energy production, the minimum blade mass, and the minimum
blade root thrust as the optimization objectives. The results show that the Pareto optimal set can be obtained in one
single simulation run and that the obtained solutions in the optimal set are distributed quite uniformly, maximally
maintaining the population diversity. The efficiency of VD-MOEA has been elevated by two orders of magnitude
compared with the classical NSGA-II. This provides a reliable high-performance optimization approach for the aer-

odynamic-structural integrative design of wind turbine blade.

Vol. 33 No. 1

Key words: wind turbine; multi-objective optimization; vector method; evolution algorithm

CLC number: TM614 Document code: A

0 Introduction

The design of large-scale wind turbine blade
relies on the best match of all parts of the whole
machine, and therefore cannot be considered as a
single-component optimization problems. This
means that the design is a complicated optimiza-
tion problem involving many variables, objectives
and constraints, such as the maximum power
output, the minimum machine cost, the mini-
mum tower load, control requirement, noise re-
duction and good manufacturing process, etc. ,
among which conflicts may exist'’. In normal
conditions, it is very difficult to solve this kind of
coupling problems with conventional hierarchical

J[2-3]

decoupling methods In multi-objective opti-
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mization, there is no single solution that is opti-
mal (global minimum or maximum) with respect
to all the optimization objectives in contrast to
single-objective one. Only acceptable non-domi-
nated solutions exist, i. e. , the so-called Pareto
optimal solutions. Currently on engineering, an
trial-and-error design process as "aerodynamic de-
sign—structural design—verification—improve-
ment” is usually adopted in wind industry, where
the blade aerodynamic design and structural de-
sign are separated, and the coordination of the
multi-variables, multi-objectives and multi-con-
straints relies on engineering experience; so much
so that a feasible solution instead of an optimal

solution can only be obtained and it may not

match the wind turbine system the best.
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Theoretically, the aerodynamic and structur-
al coupling design is the best choice to handle
such issues by means of multi-objective optimiza-

t-] However, wind turbine oper-

tion methods
ates in a complex circumstance, and therefore
thousands of design load cases (DLCs) need to be
evaluated according to the design standards, re-
sulting in such a huge computational overhead
that optimal efficiency becomes one of the key in-
dicators to be considered. In addition, wind tur-
bine design is a non-linear, non-decoupling and
constrained multi-objective optimization problem,
for which there exist a large number of optimiza-
tion objectives, variables and constraints with the
presence of complex links and restrictions among
them. These two challenges put forward strict re-
quirements for the multi-objective optimization
algorithm in both convergence and efficiency.
Over the past decades, rapid progress in
multi-objective optimization has been made.
Some classical methods such as normal boundary
intersection ( NBI)D!' and normal constraint
(NC)H™! constructs a linear reference plane on
which a series of uniform distribution points are
arranged with a form of regular simplex struc-
ture. Based on such ideas, the methods are able
to obtain Pareto optimal solutions of uniform dis-
tribution. But the main drawback is that a com-
plete single-objective optimization process needs
to be carried out for every point obtained from
Pareto optimal solutions, which makes the design
process quite computationally expensive and the
resulted calculation amount usually unbearable.
Multi-objective evolution algorithms (MOEAs),
such as NSGA-1I""', SPEA2MY and HypEM"", de-
riving the whole Pareto optimal set by launching
only one single simulation run, is very attractive
to designers. But when they are used to deal with
complex or high-dimensional problems, difficul-
ties or failures in diversity preservation, low-effi-
ciency, poor-convergence and other issues become
too challenging to overcome. Consequently,
multi-objective optimization algorithm has be-

come a key factor to restrict the aerodynamic-

structural integrated design of wind turbine

blade.

In this paper, a new multi-objective optimi-
zation algorithm incorporating vector method and
evolution strategies is proposed, followed by its
critical operators and algorithm procedures to be
described elaborately. As an example, the design
of a 1.5 MW wind turbine blade is accomplished
and analyzed to investigate the basic features of
the algorithm. The performance of the new algo-
rithm is also provided by comparison with the

classical algorithm.

1 Vector Dominant MOEA

In this section, a new multi-objective evolu-
tionary algorithm characterized by vector projec-
tion and vector diversity preservation in order to
improve the efficiency and convergence is presen-
ted, named the vector dominant multi-objective
evolutionary algorithm (VD-MOEA). This algo-
rithm retains the basic frameworks of evolution
algorithm and in particular constructs a Utopia
reference system consisting of anchor points,
Utopia plane, Utopia plane points and Utopia
vectors, similar to the traditional NBI and NC
methods. In VD-MOEA, population individuals
are firstly related to Utopia vectors one by one,
then are guided to advance along the vector direc-
tions, and finally converged to the intersections
of the projection vectors and the Pareto optimal
front. The procedures and main operator intro-
duction of VD-MOEA are described as follows:

(1) Parameter input: Define the size of algo-
rithm population Np and external archive popula-
tion Ng. Set maximum iteration number T. Set
upper and lower bounds for the variables one by
one.

(2) Utopia reference system construction;
Define the divisions of each objective axe Ng.
Construct Utopia reference system in normalized
M-dimensional space including anchor points,
Utopia plane, Utopia points and Utopia vectors
(Fig. 1). Utopia points u; are a set of evenly
spaced points generated by reasonably schemati-

zing weight vectors w, given by



No. 1 Wang Long, et al. Vector Dominating Multi-objective Evolution Algorithm for:-- 3

M
u; = § Wil
=

where

M
Ew, =1

i=1

The total number of Utopia points Ny in an

0<w <1

M-objective optimization space can be calculated

by
“Ng
TMH+Ng—1

NU :(

Anchor point
0,0,1)  pu;

Utopia vectors . .
Utopia points

K

(0,1,0)

7 Utopia plane £ (1,00

Fig. 1 Normalized Utopia reference system for a three

objective case

(3) Population initialization: Generate initial
population P,. Evaluate the fitness value of all
individuals in P,. Copy all individuals of P, to the
external archive population Pg.

(4) Genetic and evolutionary operation: Car-
ry out neighborhood selection, simulated binary
crossover (SBX) and polynomial mutation to the
external archive population Pg. Generate the next
generation P,.

(5) Population recombination; Evaluate fit-
ness and constraint values of each individual in
the population P,. Generate the combined popu-
lation Q, by mixing current population and exter-
nal archive population, expressed as

Q =P UE,
Therefore, the size of the combined population is
2Np.

(6) Strength non-dominated delamination:
Strength non-dominated delamination strategy in
the algorithm originates from SPEA2 where each
individual in the combined population is compared
with other individuals on the basis of the strength
Pareto optimal principles to find Pareto non-dom-
inated rank. Thus the Pareto optimal solutions of

the tth generation are identified and of which ev-

ery individual is assigned to a Pareto non-domina-
ted rank.

(7) Population fitness normalization: Ana-
lyze the Pareto optimal solutions from the com-
bined population Q. to find the minimum and
maximum fitness in every objective direction, and
then make up the Nadir point f~ and Utopia point
fY. For the individual 7, its original fitness f*(x)
is transformed to the dimensionless fitness F' by

adopting the following formula

N
Fj(x)z% j=1.2,+.M

Accordingly, the combined population Q, can be
normalized as the new combined population Q,.

(8) Association operation: Until now, Utopi-
a vectors and normalization population Q, have
been completely built. In this step, the associa-
tion operation that each member of Q, is classified
and subordinated to a vector is launched. For the
purpose, the Euclidean distance of each individual
of Q, with each of the vectors is calculated, and a
vector is then found to be associated with every
individual according to the shortest distance rule.
After finishing this process, every vector has a
subset Z, (j) normally including one or more
members.

(9) Aggregation fitness assignment: Each
individual of Q, includes three key parameters,
i. e. , Pareto non-dominated rank (PR), Euclide-
an sorting (ES) ranking according to the Euclide-
an distance in subset Z,(j) of the associated vec-
tor, and reference number (RN ). Based on
these, a new fitness assignment method defined
by serial connection with PR, ES and RN is pro-
posed, named the aggregation fitness. Thereby,
the aggregation fitness of an individual is ex-
pressed as

VF,={PR U ES | RN}

The aggregation fitness artfully forms a real
value that can be used for comparison between
each other, well preparing for the upcoming elite
preservation and parent selection for the next
generation.

(10) Elite preservation strategy: All individ-
uals in Q, are sorted in an ascending order accord-
ing to the aggregation fitness, and frontal Ny in-

dividuals are truncated to the external archive
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population forming a new generation.

(11) Termination: If £>>T or other stopping
principles are satisfied, storage the external ar-
chive population as the ultimate optimal solu-
tions; otherwise, set t=¢+1, go back to step (4)
and continue iteration process of the next genera-

tion.

2  Optimization Models of Wind Tur-
bine Blade

2.1 Design variables

The design variables of wind turbine blade
can be divided into two parts: aerodynamic con-
figuration variables and structural layout varia-
bles. The aerodynamic configuration variables are
used to describe the blade geometrical features of
the distributions of the chord, twist, thickness
and so on, which determine the blade aerodynam-
ic performance and fulfills the engineering manu-
facture requirements. In this design, a group of
three-order polynomials defining nine variables
are adopted, which are able to represent all com-
mon-used blade shape.

In the engineering application, the number of
structural layout variables usually is so large doz-
en that must be simplified on the basis of engi-
neering experience as much as possible for lighte-
ning the burden of optimization. In the work, we
fix the relative positions of blade spar, web, and
trailing edge enhanced layer and so on for simpli-
fication, and twelve structural design variables

are defined to optimize their thickness.
2.2 Optimization objectives

In this paper, maximum annual energy pro-
duction (AEP), minimum blade mass, and mini-
mum root thrust, among which distinct conflicts
exist, are chosen as three optimization objectives
to validate the developed optimization algorithm.

(1) Maximum AEP

The AEP of wind turbine blade relating to
recovery of the cost rate is the main design goal.
Annual energy generation is calculated under the
given wind farm conditions as follows

rmm PO ) Tl

where V,, and V. are the cut-in and cut-out wind
speeds, respectively. V,, is the annual average
wind speed, P(V) the output power at the wind
speed V', f the Weibull distribution function, and
T the annual hours.

The modified blade
(BEM) theory is used in calculation of the AEP.

The modifications include the tip loss, the hub

element momentum

loss, and correction of the axial induced velocity
factor at large thrust state.

(2) Minimum blade mass

The basic blade structure is primarily made
up of double web I-beam, as shown in Fig. 2. The
material used for the bulk of the blade is glass fi-

ber with reinforced polyester and PVC foam.

PVC foam

Inner and outer skins

Fig. 2 Blade structure schematic

To obtain blade mass, mass distribution of
the blade is firstly calculated by the applied classic
beam theory. The total mass of the blade is then

calculated by integration as follow

fo= minji:lmh m,dr
where R,,, is the hub radius, R the radius of wind
rotor, and m; the mass per unit spanwise length
at the ith section.
(3) Minimum root ultimate thrust
After finishing all the calculation of every de-
sign load conditions (DLC) according to the GL
guideline, the objective function for minimum
root ultimate thrust is as follows
fs =min(max{F, (1)}
i=DLC,,DLC,,++,DLCy
where F., (i) is the blade root load of the ith

DLC.

3 Optimization Design of 1. 5 MW
Wind Turbine Blade

In this section, a three-objective design of
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1.5 MW wind turbine blade employing the maxi-
mum AEP, the minimum blade mass, and the
minimum blade root thrust as the optimization
objectives is presented. The blade design relies on
a wind turbine platform of upwind, variable speed
and variable pitch, doubly-fed generator. The
blade length of 40. 3 m, design grade of 3A, rated
rotational speed of 17. 4 r/min are selected as a
design basis, and the other basic parameters are
given in Table 1. Also, the blade introduced in
this section for the purpose of comparison is a
counterpart blade, Aerodyn-1.5 MW blade, with
its AEP of 5 828. 2 MWh/a, blade mass of
5 943 kg and root thrust of 162 kN, respectively.

Table 1 Basic parameters of wind turbine

Parameter Value
Design grade 3A
Rated power/ MW 1.5
Numbers of blade 3
Design wind velocity/(m * s~ ') 8.5
Radius of rotor/m 40. 3
Rated rotate speed/(r « min ') 17.4
Rated power/ MW 1.5
Cut-in wind speed/(m + s~ ') 3
Cut-out wind speed/(m * s™) 25
Height of tower/m 78.1

DU/NACA 63

Airfoil families

Fig. 3(a) shows the Pareto optimal solutions
and distributions that meet the maximum AEP
(f1), the minimum blade mass ( f,) and the min-
imum root thrust (f3) of the wind turbine simul-
taneously. In this design, the maximum itera-
tions are set as 200, the divisions of each objec-
tive axe Ny are prudentially defined as 11 to get a
balance between convergence and efficiency, and
thus the population size is calculated to be 78.
The auxiliary surface to which the optimal solu-
tions are attached in Fig. 3 is fitted using five-
order polynomial functions. It can be seen that
the Pareto optimal solutions constitute a continu-

ous curved surface with evident boundaries and

complicated polygon characteristics, which are
formed under the comprehensive influences of the
variables, objectives and constraints. The opti-
mal solutions in three-dimensional space achieve
good convergence and their distribution is very
uniform, meaning that the performance of VD-
MOEA in the multi-objective optimization of
wind turbine blade is excellent. Fast convergence
can be achieved even in the case of small popula-
tion. All the points in the Pareto optimal set are
the optimal solutions for the design conditions,
and no one is superior to the others. With a set of
optimal solutions, the multi-objective optimiza-
tion design provides more flexible selections for
designers than the conventional scheme of a single
optimal solution.

For comparison, another group of Pareto op-
timal solutions obtained using the conventional
NSGA-II under the same design conditions are
displayed in Fig. 3(b). The population size and

optimization iterations are set as 500 and 2 000 re-

6200 5600
5400 6400
Wy, . 5000 7200 )

a’)

)

(a) VD-MOEA

(b) NSGA-II
Fig. 3 Distribution of Pareto optimal solutions in

three-dimensional space
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spectively on the basis of the practical experience.
It can be seen that the geometrical shapes of the
different optimal solutions provided by the VD-
MOEA and NSGA-II seem to be quite similar.
Although the optimal solutions from NSGA-II is
more in number, but their distributivity is rela-
tively poor, mainly concentrated in the boundary
line, especially the individuals are much fewer in
the middle part of the optimal front. The key rea-
son of this phenomenon is that the uniformity di-
versity preservation strategy of NSGA-II is not
embodied, which is a significant deficiency. Mo-
reover, it is also clear that the optimization effi-
ciency of VD-MOEA has been elevated by two or-
ders of magnitude in comparison to classical NS-
GA-II, and the competitive advantage in distribu-
tivity of the optimal solutions is more remarka-
ble.

For clarity, the distribution of Pareto opti-
mal solutions obtained using VD-MOEA is pro-
jected to the two-dimensional planes of f,-f, and
fi1-f5 presented, as shown in Fig. 4. The solu-
tions are also found satisfactorily spreading and
uniform in the two-dimensional space.

To better illustrate the features of Pareto op-
timal front, three blade designs marked in Fig. 4
are selected to be analyzed. The AEPs, masses
and ultimate root thrust of the blades A, B, C as
well as the counterpart blade are listed in Table
2, respectively. Let us look at the blades A and B
firstly. The AEP of Blade A is a little higher than
that of Blade B just by about 1. 6% and, corre-
spondingly, the root thrust of Blade A is a little
higher than that of Blade B just by about 2. 0%3.
From common point of view, it seems that Blade
A should be heavier than Blade B. From the
multi-objective optimization design, however, the
mass of Blade A is lower than that of Blade B by a
margin of about 5. 4% on the contrary. To ex-
plain the causes of forming this kind of complex
objective combinations, there is not yet enough
information acquired just from Figs. 3, 4. This is

only made by additional comparison of aerodyna-

7 500

7 000

4 400 4 800 5200 5 600 6 000
AEP/(MWh ¢ a™)

(a) Pareto optimal solutions in f,-f

160

" 150

140
130

4400 4 800 5200 5 600 6 000
AEP/(MWh ¢ a™)

(b) Pareto optimal solutions in f,-f,

Fig. 4 Pareto optimal solutions in the two-dimensional

projection space

Table 2 Performance comparisons of the different blades

Blad AEP/ Mass/ Ultimate root
ade (MWh a1 kg thrust/kN
A 5682.4 5 398 143. 1
(—2.5%) (—9.1%) (—11.6%)
B 5594, 4 5 705 140. 3
(—4.0%)  (—4.0%) (—13.4%)
c 6 063.5 5 859 154. 9
4.1%) (—1.4%)  (—4.4%)
?eéo&y\‘; 5 828. 26 5943 162

Percentages are values compared to Aerodyn-1. 5 MW blade

mic characteristics of different blade designs.
Fig. 5 shows the distributions of chord, relative
thickness and absolute thickness for these three
blades. From Fig. 5, the solidity of Blade A is
obviously larger than that of Blade B, which pro-
duces increased load of Blade A. This is the main
reason why the root thrust and AEP of Blade A
are a little larger. However, it can be seen from

Fig. 5 that the relative thickness of blade B is low-
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er and therefore has a higher lift coefficient, thus
resulting in both higher aerodynamic performance
and higher thrust. By these compromises, the
differences in both AEP and blade mass between
Blades A and B are not remarkable. Meanwhile,
because Blade A has higher stiffness owing to a
larger absolute thickness resulted from thicker
airfoil and wider chord, it may need the thinner
bearing layout to resist the load and meet the de-
flection constraints, and thus the blade mass is

effectively reduced.

——Blade A
——Blade B
—o—Blade C

c/m

0 10 20 30 40

100

80

60

Relative thickness

— —_
[ele] [\ (=)
(= S (=]

Absolute thickness / mm
N
(=)

(=]

Fig. 5 Blade chord and thickness distributions

Blade C produces higher AEP than Blade B
because the chord of Blade C is wider than that of
Blade B. On the other hand, the absolute thick-
ness of Blade C is larger than that of Blade B,
which is helpful to decrease the blade mass. The
relative thickness of Blade C is the least among
the three designs, which is also beneficial to im-

prove the aerodynamic efficiency, resulting in the

highest AEP.

and root ultimate thrust cannot simultaneously

In summary, the AEP, mass,

be optimal. Nevertheless, good blade aerodynam-
ic performance is generally acquired at the cost
of high load on the blade, thus resulting in
blade mass increase. By comparing Blades A, B
and C, as well as Aerodyn-1. 5 MW blade
(5 828.2 MWh/a, 5 943 kg and 162 kN), it can
be seen that the AEP, mass, and root ultimate
thrust of Blade C are increased by 4. 1%, —14%
and — 4. 4%, respectively, than the Aerodyn-
1.5 MW blade, demonstrating that Blade C has
good performance in all the three-objective direc-
tions and seems to be a more desirable result than

the other two blades.

4 Conclusions

A new vector dominant multi-objective opti-
mization algorithm, referred as VD-MOEA, in-
corporating basic evolution strategies and vector
methods, has been proposed and applied in the
field of aerodynamic-structural integrative design
of wind turbine blades. A set of virtual vectors,
which are used to guide optimal solutions in ad-
vancing to the Pareto optimal front with high effi-
ciency, are elaborately constructed in the meth-
od. In comparison with the conventional meth-
ods, VD-MOEA can obtain a complete optimal
solution set of uniform distributions through a
single process, and shows the significant advanta-
ges in both population diversity preservation and
optimization efficiency. The proposed algorithm
is then used to design a 1. 5 MW wind turbine
blade with three conflicting optimization objec-
tives, and a set of optimized blades has be ob-
tained. At least one blade has higher perform-
ance, less mass and less root ultimate thrust than
the reference Aerodyn-1.5 MW blade without any
design inputs changed. VD-MOEA can be used as
a general high-performance approach in multi-ob-

jective optimization design of wind turbine blade.
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