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Abstract; Digital images are frequently contaminated by impulse noise (IN) during acquisition and transmission.
The removal of this noise from images is essential for their further processing. In this paper, a two-staged nonlin-
ear filtering algorithm is proposed for removing random-valued impulse noise (RVIN) from digital images. Noisy
pixels are identified and corrected in two cascaded stages. The statistics of two subsets of nearest neighbors are
employed as the criterion for detecting noisy pixels in the first stage, while directional differences are adopted as
the detector criterion in the second stage. The respective adaptive median values are taken as the replacement val-
ues for noisy pixels in each stage. The performance of the proposed method was compared with that of several ex-
isting methods. The experimental results show that the performance of the suggested algorithm is superior to those
of the compared methods in terms of noise removal, edge preservation, and processing time.

Key words: image de-noising; random-valued impulse noise; nonlinear filter; noisy pixel detection; two-stage de-

Vol. 33 No. 3

tection and correction method; cascaded stages; directional differences

CLC number: TP391 Document code: A

0 Introduction

In image processing, noise reduction is a nec-
essary and challenging step, which further influ-
ences the performance of subsequent analyses.
Image noises are of various types, such as ampli-
fier noise, film grain, shot noise, speckle noise,
and impulse noise. During acquisition and trans-
mission, digital images are commonly corrupted
by impulse noise (IN). There are two types of
INs: fixed-valued impulse noise (FVIN) and ran-
dom-valued impulse noise ( RVIN)M!, In this
study, we focused on removing RVIN while pre-
serving the details and edges of the image. Let
I1(i, j) and I'(is j) be the intensity values at pix-
el location (i, j) of the original and noisy image,

respectively, n(i, j) the noise value at location
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(iy j)y and [T s I ) the dynamic range of the
intensities of the original image. Then, the IN
model with noise probability p using the Bernoulli

uniform noise model can be given as™>

IGi,5)

, With probability p
I'G,j) = o .
n(i,j) /

With probability 1 — p
For FVIN, a noisy pixel can take the value of ei-
ther I, or ..., whereas for RVIN it can be
any random value between I, and I,..->%.
Non-linear filtering techniques, of which me-
dian filters are an example, are used frequently to
remove IN. The efficiency of the standard median
filter (SMF)Mis good but it blurs the details and
edges when the noise density exceeds 50 %%,
Several variants of SMF, such as the adaptive
median filter (AMF)™ and center-weighted me-
dian filter (CWMF)™’, were designed to over-
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come this problem. These methods process all
the corrupt, as well as the uncorrupt pixels,
which results in blurring, distortion, or elimina-
tion of the structural details.

To achieve ideal filtering, the filter should
treat only the noisy pixels without affecting the
noise-free pixels and therefore a noise detection
procedure must be adopted before the filtering
process is performed™®. Some noise removal
methods using noise detectors were proposed.
median filter

For example, the tri-state

(TSMPF)M integrates SMF and CWMF in a noise
detection framework, the recursive adaptive cen-
ter-weighted median filter (ACWMF)™? realizes
the impulse detection based on the differences be-
tween the current pixel and the outputs of a
CWM filter with varying weights, and the switc-
hing median filter (SWMF)[*! detects noisy pixels
using the results of four convolutions obtained
from one-dimensional Laplacian operators. Be-
sides this, wavelet transform and the contourlet
based edge preserving methods were also pro-
posed. Weng et al. " used translation-invariant
(TI) dyadic wavelet transform to suppress the

1. 51 applied contourlet modulus

noise and Wu et a
maxima technique to high frequency image por-
tion for edge detection during noise elimination.
The disadvantages of the aforementioned decision
and transformation based filters are that prede-
fined thresholds are required and possible edge
pixels in corresponding regions are not specially
considered during replacement, and thus, the
edge and structural details remain unrecovered.
Recently, Shan and Zhu"'® presented a local simi-
larity pattern-based method. In this method, cor-
rupt pixels are restored using the normalized
weighted sum of the good pixels in their neigh-
borhoods. However, the selection of separate
weights for a smooth and an edge region renders
the filtering process complex. In the method
presented in Ref. [17 ], a low-rank matrix ap-
proximation is used to preserve the texture detail
in IN corrupted images and a weighted matrix is

incorporated to estimate the distribution of spatial

noises. This method is designed to detect and re-

move non-pointwise random-valued IN, 1i. e.,
very small noise blobs, efficiently. In the last few
years, fuzzy logic-based filtering techniques have
been used as a substitution for the previous noise

detection and reduction methodst*?,

For exam-
ple, a hybrid filtering technique'® detects noisy
pixels using the asymmetric trimmed median fil-
ter (ATMF) and restores them by using ATMF
combined with a fuzzy inference system. Fuzzy
filters apply human decision-making strategies to
classify noisy and noise-free pixels, but at the
cost of an appropriate balance between noise elim-
ination and edge protection.

To protect the edges, Awad™®) proposed a
method that finds an optimal direction to be used
as a scale to judge noisy pixels. Since the direc-
tion that has the most similar pixels is considered
the optimal direction, the recovery of edges hav-
ing pixels between which there is a greater differ-

24 proposed a de-

ence is affected. Ebenezer et al.
cision-based algorithm that replaces detected nois-
y pixels with either the median intensity value or
the intensity value of a certain nearby neighbor.
This method resolves the blurring effect prob-
lem, but the three sorting steps of which it is
comprised lead to a decrease in filtering efficien-
cy. Vijayaragavan et al. ™ also contributed to
blurred edge restoration and proposed a two-
staged algorithm that calculates directional differ-
ences in four directions. The noisy pixel is re-
placed with the median value of the pixels corre-
sponding to the directions having the least differ-
ences. This method is time-efficient, but noisy
pixels that are very similar to their noise-free
neighbors remain undetected and thus the filte-

ring performance is affected. Lien et al. "

pro-
posed a method that uses a decision-tree-based
noise detector and a complex edge preserving re-
construction design. Turkmen™ proposed a four-
phase method for the reinstatement of edges. In
each phase, the noisy pixel is determined by re-
spective statistical measures and replaced by the
median value of its noise-free neighbors. This

method is effective in terms of noise removal and

edge restoration, but increases the processing
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time because the image must be scanned four
times.

Here we propose a two-staged filtering meth-
od that addresses the problems of edge blurring
and increases processing time encountered during
RVIN removal. The proposed method is an im-
proved and hybrid version of the techniques pro-
posed by Vijayaragavan'®' and Turkmen"*’. In
our method, the detection and correction of noisy
pixels at each of the two stages are accomplished
differently., The performance of the proposed
method is compared with that of other median-
based and some recently developed methods. Our
method is found to yield a significantly better per-
formance than other baseline methods in terms of
noise removal, edge preservation, and processing

time.

1 Proposed Method

The proposed algorithm comprises two cas-
caded noise detectors instead of four independent
detectors as applied in Turkmen’ s method™®" .
The replacement of noisy pixels is accomplished
in a different manner in each stage in contrast to
Turkmen’'s method™®”’, where the same replace-
ment mechanism is used in all phases. In stage
I ., a noisy pixel is detected by examining the
mean values of the absolute differences between
the test pixel and two subsets of its neighbors. If
the results show that the test pixel is noisy, its
value is replaced by the median value of its neigh-
boring pixels; if the pixel is found to be noise-
free, its noise-free character is verified again in
the second stage. In stage [l , the detection of a
noisy pixel is achieved by comparing it with its
neighborhood pixels in four directions. The test
pixel is considered noisy when substantial differ-
ences exist between it and the pixels along more
than two directions, and the median of the pixels
from these directions is then used to replace the
noisy pixel. Therefore, directional differences are
used in noise detection instead of in the calcula-
tion of the replacement value as in Vijayaragavan'
s method™®’. The unique aspects of our method

are that noise detection is based on two different

criterions implemented in two stages respective-
ly. a noise-free pixel is tested twice in one scan,
and two different replacement values are used.
Through this two-staged method, we detect and
correct the noisy pixels in two cases. The objec-
tive of the first stage is to find the noisy pixels
that are significantly different from their neigh-
bors. The second stage uses directional differ-
ences not only to capture small-difference cases
missed in stage | , but also to differentiate edge
from noisy pixels, because the directional differ-
ence technique distinguishes the directions having
obvious differences from those having unobvious
ones. A complete description of the proposed al-

gorithm is given in Section 1. 1.
1.1 Algorithm description

Consider a gray-scale noisy image I corrupted
with RVIN and a sliding square test window W
of size 3 X 3 centered at test pixel (i, j), given
as

We={IG+1L.j+m) |[—1<Il,m=<1} (1)

The noisy image is scanned by the test win-
dow and the proposed two-staged detection and
correction method is applied. Let N, be the set of
all neighboring pixels in W written in an ascend-
ing order, Med(N,) be the median of all neigh-
boring elements, and D, be a distance vector set
defined as D, = {|I(i,j)— N | |x=1,,8}.
Two statistical variables S; and S, based on D,
are defined as the mean value of the first three
and the next two smallest D, values, respective-
ly. Assume that all elements in D, are listed in an

ascending order. S, and S, are calculated as

3
S, =1/3>.D, (2)
x=1
S, =1/2>.D, (3)
x=4
The first stage of the noise detection process
starts
o noisy If S,>T, and S, >T,
noisefree  Otherwise

where T; and T, are the thresholds. If the value
of Eq. (4) indicates that the test pixel is noisy, it
is replaced by the median value of the last seven

neighboring pixels. The first most similar neigh-
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bor is excluded from the calculation of the re-
placement value because of its probability of being
noisy. The test pixel, if detected as noise-free,
will be tested again in stage [[ for further assur-
ance. In stage [, four variables denoted by Ag
are defined as the absolute differences between
the intensity value of the test pixel and the mean
intensity values of its neighboring pixels along
four major directions, i. e. , horizontal, vertical,
left diagonal, and right diagonal. These four vari-
ables are calculated as
Ap=| (G, j—D +1G,j+1))/2—10,;) |
Ay =] HG—=1,)) +TG+1,j))/2—10,.5) |
A=l HG—1.j—D+IG+1,j+1))/2—
1G5 |
Ar=| JG—1,j+D +IG+1,j—1)/2—
G, | (5)
From the absolute differences given in
Eq. (5), a variable c¢nt is defined as equals the
number of Ag that is greater than T, and the pix-
el detected as cnt noise-free in stage | is tested a-
gain
noisy If cnt>2
IG,jpr=1( . . (6)
noisefree  Otherwise
A detected noisy pixel is replaced by the me-
dian value of pixels in the directions having Ag
greater than T;. The rationale behind this re-
placement mechanism is that other elements of
the discarded directions are very near to the test
pixel and therefore they could also be noisy.
while the pixels corresponding to the directions
under c¢nt are noise-free. Therefore, the noisy
pixel is replaced by the median value of noise-free
pixels. The two-staged detection and correction
method is now completed and the test window is
moved to process the next pixel. The entire
structure of the algorithm is depicted by the flow-

chart given in Fig. 1.
1.2 Logic of algorithm and threshold

The logic behind using two variables in the
first stage is as follows. S, helps distinguish a
noisy pixel from its neighbors because the neigh-
boring pixels of a noise-free test pixel in general

possess similar characteristics. However, in the

intensity of surrounding
pixels accordingly

Vol. 33
Take gray-scale noisy image / |
Scan the image with 3 X3 window
W, centered at pixel I(i,j)
s e
i Stage [ : Calculate two Stage 1 1
I | mean variations S, and S, '
! i
1 I
1 I
1 I
1 I
1 1
1 I
! i
i N Replace I(i, ) by median i
! i
! i
H [

Stage I1: I(i,j) pixel is tested again.
Calculate the absolute differences of
intensity value of I(, j) pixel and mean
intensity of its neighboring pixels along
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)
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1 1
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1 1
1 1
1 1
1 1
1 1
1 1
1 1
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1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1(i,j) pixel is noisy

Replace (i, j) by median
intensity of the elements
corresponding to
the directions under cnt

—{ Move window to the next pixel |

Filtered image

Fig. 1 Flowchart of the algorithm

case of an image corrupted with a high noise den-
sity, the nearest three neighbors of the test pixel
may also be noisy and their intensity values may
be very near those of the test pixel. In this case,
the mean value obtained from Eq. (2) is very
small and therefore some noisy pixels remain un-
detected. In order to avoid corrupt pixels escaping
detection, the mean of the absolute differences
between the intensity values of the central pixel
and the next two most similar pixels is calculat-
ed, as given in Eq. (3). The test pixel is classi-
fied as noisy if the value of Eq. (3) is larger than
some threshold. In addition, if the test pixel is an
edge pixel there must be at least one more pixel,
having almost the same intensity, and therefore,

the number of similar neighbors may exceed
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three. Therefore, variable S, is included to dis-
tinguish edge and noisy pixels. On the basis of
the scenario stated above, the threshold values
for T, and T, are kept smaller and greater, re-
spectively. For Ty, a significantly larger thresh-
old value is selected, because in the practical sce-
nario of stage [[ not only are the corrupt pixels
that have smaller differences in intensity than
their neighbors detected but also edge pixels are
distinguished from plane pixels. Because the test
pixel varies and synchronizes its properties ac-
cording to the elements in four directions, using
directional differences to detect a noisy pixel in

stage [ is very justifiable.

2 Experimental Results

The performance of the proposed method
was tested under different noise conditions on
four test images, as shown in Fig. 2. These are
8-bit gray level images and were all resized to 512

pixel X512 pixel.

i

(b) Cat

It

(a) Lena (c) Peppers

(d) Dog

Fig. 2 Test images

The filtering performance of our method was
compared with those of median-based filters, in-
cluding the standard median SM filter (with a 3 X
3 filtering window)""', CWM filter'", AMF"',

L4 where a

and the filters proposed by Ebenezer
directional difference decision-based algorithm
with a 3 X3 filtering window is applied, Vijayara-

21 where directional differences are used

gavan
to calculate the replacement value with a thresh-
old T=0.50Xgs, Lien™7, which constitutes a de-
cision-tree-based detector with thresholds of 20,
25, 40, 80, 15, and 60, and Turkmen"*"!, which
is a four-phase method with thresholds [ T,, T,,
T,, T,]=1[8,15,6,6]. In all the experiments,
threshold values [ T,, T,, T, =110, 16, 120]]
were applied in our method. The logic of calculat-

ing thresholds directly from noise observation has

already been described in Section 1. 2.
2.1 Image restoration performance comparison

The test images used in the experiments
were contaminated by RVIN with noise ratios
ranging from 15% to 75%. A quantitative com-
parison of the restoration performances of differ-
ent filters was performed using two image quality
evaluation metrics: peak signal to noise ratio
( PSNR )  and
(NAE)!2%7 - The PSNR was calculated as

PSNR =10log,, (255" /MSE) 7

Mean square error (MSE) was defined as

normalized absolute error

M N
MSE =1/MN > > (0, — f1.)°

j=1 k=1

where o;,, and f;, , represent the original and fil-
tered images of size M X N, respectively. A lar-
ger value of PSNR reflects a higher quality of the

reconstructed image. NAE was calculated as

M
E 2 ‘O./s/v 7f;.k ‘
NAE =711 ®)
2 E ‘OM ‘
i—1 k=

J 1
A larger NAE value means the quality of the fil-

tered image is poor.

All the experiments were repeated 10 times
on each test image corrupted with different noise
densities and then the average PSNR and NAE
values of the proposed and other comparison fil-
ters were calculated, as listed in Table 1. The
PSNR and NAE statistics show that SMF, AMF,
CWMEF, and Ebenezer's method do not give satis-
factory results as compared to the other methods.
Among the remaining four methods, our method
performs fairly well as compared to Turkmen's
method, and much better than Vijayaragavan's
and Lien's methods. In Turkmen's method, the
most similar three neighbors having a chessboard
distance equal to two are used as a detector that
identifies the corrected pixels as noisy. There-
fore, the pixels that are corrected in phase [ are
changed in phase [[ , resulting in low PSNR and
high NAE values.

method corrects only those noisy pixels in stage

In contrast, our proposed

I that were missed in stage [ , and therefore,

each noisy pixel is corrected in either stage | or
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stage [ » but not both. Similarly, in Vijayaraga-
van's method the replacement value is calculated

on the basis of pixels in specific directions, and

therefore, the probability that edge pixels are
used in the replacement value increases. This re-

sults in blurred edges as well as poor filtering.

Table 1 Quantitative results on four test images corrupted with RVIN of different densities
Lena
PSNR NAE
Algorithm Noise Density (ND)/% Noise Density (ND)/%
15% 30% 45% 60% 5% 15% 30% 45% 60% 75%
SMF 32.806  28.019  22.945 18.912  15.901 0.025 0.038 0. 069 0.129 0.216
AMF 25.471  20.109  17.019  14.885  13.246 0.026 0.071 0.133 0.211 0.299
CWMF 29.885  25.088  20.717 17.414  14.914 0.037 0.056 0.095 0.162 0.248
Ebenezer 27.467  21.931 18.524  16.014  14.057 0.021 0.054 0.106 0.178 0.268
Vijayaragavan  33.116  28.822  24.722  20.681 16. 862 0.014 0.026 0.051 0.095 0. 181
Lien 31.085  28.873  25.987  22.178  18.241 0.031 0.038 0.053 0.088 0.163
Turkmen 33.113  30.271  27.554  23.763  19.121 0.012 0.021 0.034 0.062 0.134
Proposed method 33.922  31.284  27.865  23.931 19.522 0.011 0.019 0.033 0.061 0.129
Peppers
SMF 36.533  28.731  22.721 18. 431 15. 321 0.011 0.025 0.061 0.129 0.231
AMF 24.856  19.282  16.267  14.103  12.475 0.023 0.074 0. 145 0.233 0.333
CWMF 32.957  26.373  21.289 17.532  14.768 0.022 0.038 0.079 0.152 0. 251
Ebenezer 26.671  21.008  17.745  15.295  13.358 0.017 0. 055 0.113 0.194 0.295
Vijayaragavan  36.692  30.062  25.078  20.622  16.524 0. 007 0.019 0.042 0.091 0.184
Lien 35.536  31.472  27.379  22.545 17. 886 0.015 0.022 0.037 0.077 0.168
Turkmen 37.151  32.768  28.914  25.047  19.186 0. 006 0.013 0.024 0.047 0.128
Proposed method 37.353  32.953  29.222  24.833 19.732 0. 005 0.012 0.023 0.048 0.126
Cat
SMF 37.413  27.045  20.381  15.891  12.902 0.016 0. 048 0.144 0.333 0.588
AMF 22.975  17.569  14.532  12.352  10.744 0.051 0.163 0.321 0.521 0.739
CWMF 32.702  23.655 18.019  14.276  11.743 0.031 0. 087 0.225 0. 447 0.711
Ebenezer 24.968  19.265 15.906  13.356  11.444 0.036 0.121 0. 257 0.453 0. 686
Vijayaragavan  36.431  29.076  23.384  18.379  14.058 0.011 0.035 0.091 0.215 0.468
Lien 37.709  33.274  27.539  21.255  15.459 0.021 0.031 0.061 0.016 0.433
Turkmen 40.409  36.256  33.028  26.021 17.236 0. 006 0.014 0.023 0. 069 0.333
Proposed method 40.746  36.899  30.812  25.898  17.819 0. 006 0.014 0.032 0.071 0.325
Dog
SMF 38.271 27.601 20.674 16. 292 13.323 0.007 0.023 0.076 0.178 0.317
AMF 23.318 17.844  14.725 12.576  10.967 0.027 0.092 0.184 0.299 0.425
CWMF 34.392  25.205  19.271 15. 449 12. 749 0.013 0.037 0.101 0. 209 0. 346
Ebenezer 24.798  19.307  16.059  13.592  11.711 0.023 0.072 0.152 0. 261 0. 387
Vijayaragavan  37.451  29.441  23.689  18.765  14.425 0. 005 0.018 0. 048 0.116 0. 253
Lien 39.157  33.372  27.304  21.282  15.518 0.009 0.015 0.032 0.089 0. 245
Turkmen 41.031  35.231  31.113  25.078 17.372 0.003 0.008 0.018 0.041 0. 185
Proposed method 40.984  35.809  30.842 25,447 18. 391 0.003 0. 007 0.018 0.039 0.177

2.2 Processing time

A comparison of the processing time of the
proposed and other baseline filters is given in Ta-
ble 2. SMF, AMF, CWMEF,

method are faster but yield worse results than the

!
and Ebenezer s

other three methods. Lien and Turkmen's meth-

ods are slower than all the baseline methods. The
reason for this is that the image is scanned four
times and a variable sized window is used in
Turkmen's method, while many variables are cal-
culated in Lien’ s method. The proposed algo-

rithm is faster than Vijayaragavan, Lien, and
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Turkmen's methods because of its single scan and
fixed window size design. The proposed and other
comparison filters were implemented using MAT-
LAB R2013a. All the experiments were per-
formed on a Win7-PC with Intel (R) Core (TM)
i5-3320M, CPU 2. 6 GHz.

Table 2 De-noising time in seconds for Peppers image

ND
Algorithm
& 15%  30%  45%  60%  75%
SMF 3.16  2.67 6.60 6.22  3.86
AMF 5.46  4.41 12,00 13.57  7.61

CWMF 3.02 2.75 7.49 8. 54 4. 85
Ebenezer 3. 20 3.01 6. 30 8. 87 6.25
Vijayaragavan 20.49 15.22 34.19 37.54 27.61
Lien 47.72 44.45 40.71 39.31 43.64
Turkmen 39.22 51.67 47.54  45.91  48.46
Proposed 11.54 11.07 22.57 25.33 15.30

2.3 Comparison of visual performance

All the test images were corrupted with dif-
ferent noise densities and filtered using different
methods, as shown in Figs. 3, 4, respectively.
The visual results show that SMF performs well
in terms of filtering noises having a low density,
but is not effective when applied to images having
high noisy densities. The output images of AMF,
CWMF, and Ebenezer's method are very similar
to each other and do not outperform SMF. How-
ever, Vijayaragavan, Lien, and Turkmen's meth-
ods yield a significantly better visual perform-
ance. Among these three, Lien's method pre-
serves edges more efficiently than Turkmen’ s
method, which effectively filters noise. In con-
trast, our method shows a similar performance at
first glance, but closer observation reveals that it
outperforms all the other compared methods in
terms of both noise removal and fine detail pres-
ervation, as shown in Fig. 5. The boundary lines
of the dog’s nose in Dog can be seen clearly in the
image filtered by our method, whereas in those
filtered by other methods the nose edges remain
blurred with some corrupt blotches. Similarly,
the nose and lips in Lena and the nose edges of
the cat in Cat are sharper and better distinguished
in the images filtered by the proposed method.

Therefore, our method is efficient in terms of

edge preservation. The four-phased methodology
of Turkmen confuses edge and plane surface noisy
pixels, and thus, pixels at sharp edges receive
values similar to those of plane surface pixels,
which results in blurred edges. The isolation
module in Lien's method affects the filtering per-
formance. Similarly, when the edge pixels are
used in the calculation of replacement values in
Vijayaragavan's method, the edges are expanded
toward the plane surface, which renders noisy
and edge pixels indistinguishable. As the intensi-
ty values of the noisy pixels are random and the
number of pixels similar to a noisy pixel is
changed randomly, it is appropriate to examine
the noisy pixels twice, as in the proposed meth-
od. In our method, obvious noise is corrected at
stage ] and missed noisy pixels are rectified at
stage ||, and therefore, two different replace-
ment values calculated by different methods are
used, which enhance the proficiency of edge pro-
tection. Thus, the proposed method exhibits the
best visual performance with the preservation of

trivial details.

e d \
‘! ), P 3 T

(a) Lena (30%) (b) Cat (5) (c) Pepers (60%) (d) Dog (75%)

Fig. 3 Noisy images with different noise ratios

2.4 Selection of threshold parameters

Three threshold parameters, T,, T,, and
T, ,were used in our experiments. The values of
parameters usually influence the results signifi-
cantly. In this subsection, we describe three sets
of experiments conducted to show that [ T,, T,,
T,]=[10,16,120] are the best parameters that
can be used in image de-noising experiments.
These three sets of experiments were all per-
formed on the Lena image. In each set of experi-
ments, the values of two parameters were fixed
while the value of the remaining parameter was
varied. The PSNR results of this series of experi-

ments are plotted in a curve in Fig. 6. First, we
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set the values of parameters T, and T to be 16
and 120, respectively, to analyze the influence of
T, on the filtering performance. It is obvious
from the graph of T, that the PSNR value increa-
ses as the threshold increases until it reaches an
optimum PSNR value and then decreases again
with a further increase in T,. Threshold T, gives
the best results in the range [8,12] and the opti-

mum threshold is approximately 10. Second, we

fixed T, and Ty at values 10 and 120, respective-
ly, to determine the effect of T, on the PSNR val-
ue. Threshold T, yields the best performance in
the range [ 13, 20 ] and the maximum PSNR value
is obtained at T, = 16. Third, for threshold T,
our method performs well in the range [ 117,
1237, when the values of T, and T, are fixed at
10 and 16, respectively. The highest PSNR value

is attained at T;= 120.

(a) SMF (b) AMF (c) CWMF

Fig. 4

(d) Ebenezer (e) Vigayaragavan

(®) Lien (g) Turkm (h) Proposed method

Visual results for restoring Lena, Cat, Peppers., and Dog corrupt images with noise ratios

of 30% ., 45%, 60% ., and 75% , respectively

(b) Lien

(a) Vijayaragavan (c) Turkmen (d) Proposed method

Fig. 5 Edge preservation results for restoring Lena,
Cat, and Dog corrupt images with noise rati-

os of 15%, 45%, and 75%, respectively
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3 Conclusions

In this paper, a two-staged nonlinear filte-
ring algorithm was proposed. In the first stage of
our method, noisy pixels are detected using nea-
rest neighbors, while in the second stage noisy
pixels are detected using directional differences.
The replacement value in stage [ is calculated
using the median value of all neighboring pixels,
except the first most similar one, whereas the
median value of elements in specific directions is
used to calculate the replacement value in stage
II. The proposed algorithm was tested on images
contaminated with different noise densities. The
experimental results disclose that the proposed
method exhibits a better performance than other
methods in terms of both noise removal and pro-
cessing time. Furthermore, because of the dual
check of a noisy pixel in two cascaded stages, our
method outperforms all other comparison meth-
ods in terms of edge and minor detail preserva-
tion. To summarize, our method is efficient in
terms of processing time, noise removal, graphic
appearance, and edge preservation. Future work
will focus on improving the proposed method to
make it appropriate for processing the color ima-

ges and removing other types of noise.
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