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Abstract: RNA-sequencing (RNA-seq), based on next-generation sequencing technologies, has rapidly become a
standard and popular technology for transcriptome analysis. However, serious challenges still exist in analyzing
and interpreting the RNA-seq data. With the development of high-throughput sequencing technology, the sequen-
cing depth of RNA-seq data increases explosively. The intricate biological process of transcriptome is more compli-
cated and diversified beyond our imagination. Moreover, most of the remaining organisms still have no available
reference genome or have only incomplete genome annotations. Therefore, a large number of bioinformatics meth-
ods for various transcriptomics studies are proposed to effectively settle these challenges. This review comprehen-
sively summarizes the various studies in RNA-seq data analysis and their corresponding analysis methods, inclu-

ding genome annotation, quality control and pre-processing of reads, read alignment, transcriptome assembly, gene

and isoform expression quantification, differential expression analysis, data visualization and other analyses.
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0 Introduction

In the past two decades, microarray technol-
ogy had dominated the transcriptome analysis and
led to a number of monumental accomplish-
ments. However, the limitations of microarray
showed a need for new and improved technologies
for sequencing variousorganism genomes. In re-
cent years, the next-generation sequencing tech-
nology has become as an attractive alternative to

(3] The next-generation sequencing

microarray
technology is now being exploited not only to ana-
lyze static genome, but also dynamic transcrip-
tome in an approach termed as RNA-seq. In gen-
eral, a population of RNA is converted to a li-
brary of cDNA fragments with adaptors attached
to one or both ends. Each molecule with amplifi-
cation is then sequenced in a high-throughput
manner to obtain short sequences from one end
(single-end sequencing) or both ends (paired-end

sequencing). Several sequencing platforms, in-
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cluding Roche/454, Illumina/Solexa, ABI/SOIL-
iD and Ion Torrent, are commercially available,
and Illumina/Solexa platform is the most widely
used. Compared to microarray, RNA-seq does
not depend on the existing gene information and
can obtain almost all expressed transcripts for an
RNA-seq experiment, while microarrays need the
prior gene information to design the probes and
consequently microarrays cannot detect novel al-
ternative splicing variants, novel genes and tran-
In addition, RNA-seq has low back-

ground noise, a broader dynamic range of expres-

scripts.

sion level, increased specificity and sensitivi-
ty“'m.

Currently, RNA-seq has rapidly become a
standard and widely-used technology for tran-
scriptome analysis, such as calculating gene and
isoform expression level”™, detecting differential

(591 | detecting gene fusions!”™, detec-

[11-12]

expression

ting differential splicing , finding novel tran-

[13]

scripts and revealing small noncoding
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RNAs", etc. Due to the tremendous benefits
from RNA-seq technology, these studies have
made a great progress and obtained unprecedented

5] However, some challenges still

achievements
exist in RNA-seq data analysis. In detail, many
biases in RNA-seq data, arising from the library
preparation step in the RNA-seq experiments,
can affect the downstream analyses, e. g. gene
and isoform expression quantification'™. Most
remaining organisms still have no available refer-
ence genome or have only incomplete genome an-
notations. This leads to inaccurate estimation and
reconstruction of expressed transcriptst’ '™, Mo-
reover, with the development of the high-
throughput technology, the sequencing depth of
RNA-seq data explosively increases. For exam-
ple, the newest Illumina platform can produce
2.5—5 billion reads in per run. Therefore, the
rapidly increased sequencing depth requires more
powerful computing platform and higher compu-

tational efficiency of the algorithms™®,

A large
number of methods and tools have been proposed
to overcome these challenges for various tran-
scriptomics studies 24,

Once the millions of reads are obtained from
an RNA-seq experiment, the RNA-seq data anal-
ysis is subsequently conducted for biological dis-
covery. The comprehensive analysis procedure of
RNA-seq data is shown in Fig. 1. Before aligning
reads, quality control and pre-processing of reads
are necessary to clean the raw reads, such as low-
complexity sequences and untrimmed adapters,
etc. Then the cleaned reads are aligned to refer-
ence genome sequences, which are crucial for ac-
curate downstream RNA-seq studies. According
to the availability of reference genome sequences,
the procedures of RNA-seq data analysis are usu-
ally divided into two strategies. For those organ-
isms, such as human, rat, mouse, etc., which
have high-quality reference genomes and refined
genome annotations, reads can be aligned to the
reference and various RN A-seq studies can be per-
formed without genome-guided transcriptome as-
sembly. If the annotations are incomplete or the

experiment goal is to find novel transcripts, the

genome-guided transcriptome assembly is re-

quired before conducting other studies. However,
most of the remaining organisms do not have ref-
erence genome sequences. Even if the genomes of
some organisms have been sequenced, the refer-
ence genomes are still not available because long
gaps or ambiguous bases lose a lot of genome in-
formation. Therefore, de novo transcriptome as-
sembly needs to be carried out before various
downstream studies can be conducted based on
different research goals. Among these studies,
data visualization can help to show results in a ge-
nomic context. Finally, the analysis results need
to be interpreted in term of biological signifi-

cance.

Quality control and pre-
processing of reads
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Fig.1 Comprehensive analysis procedure of RNA-seq
data

In this review, we firstly introduce the ge-
nome annotation, which directly affects the
downstream analyses. Then we present a compre-
hensive review of current methods that are used
to conduct various transcriptomics studies using
RNA-seq data, including quality control and pre-
processing of reads, read alignment, gene and
isoform expression quantification, differential ex-
pression analysis, transcriptome assembly, visu-
alization tools and other analyses. The compari-
son results for some typical analysis steps based
on our analysis are also provided for guiding the

selection of tools.
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1 RNA-seq Data Analysis

1.1 Genome annotation

Genome annotation refers to the process of
identifying and locating genes and other genomic
elements, such as transcripts, exons and intronic
structures, etc. Moreover, it attaches some func-
tional notions in the form of controlled vocabula-
ries, such as gene ontology (GO), or the meta-
bolic pathways. The genome annotation is widely
applied to various RNA-seq studies. In the phase
of the read alignment, the annotation is used to
assign the reads to the annotated genes or tran-
scripts. After calculating expression level or de-
tecting differential expression, the annotations
can provide the functional information to explain
the biological meaning from the analysis results.
Therefore, genome annotation is a crucial compo-
nent of RNA-seq data analysis.

Up until now, many public genome annota-
tions from various databases and projects are cre-
ated as shown in Table 1. Because of variations,
characteristics of these annotations differ in anno-
tation strategies and information sources. RefSeq
database built by the National Center for Biotech-
nology Information (NCBI), provides only a sin-
gle record for each natural biological molecule for
major organisms ranging from viruses to eu-
karyotes™!. The UCSC Known Gene database
constructed by the University of California Santa
Cruz (UCSC) serves as a foundation for the UC-
SC Genome Browser. This database is based on
protein data from Swiss-Prot/ TrEMBL (UniProt)
and the associated mRNA data from Gene-
Bank[®7,
(Vega) database manually curates transcripts
produced by the HAVANA group at the Welcome

Vertebrate and Genome Annotation

Trust Sanger Institute ( WTSI) and has been
merged into Ensembl™!, Ensembl database led
by EMBL-EBL and WTSI, contains both automa-
ted genome annotation and manual curation"®’,
while the gene set of GENCODE corresponds to
Ensembl annotation'®’. H-Invitational database
(H-InvDB ) based on the Genome Information In-
tegration Project, assigns a standardized function-
al annotation by manual curation®®”. The Con-
sensus Coding Sequence (CCDS) project is a col-
laborative effort to maintain a dataset, which in-
cludes the consistently annotated protein-coding
regions and high-quality human and mouse refer-

AceView led by

NCBI provides a curated, comprehensive and non-

ence genome assemblierst®®.

redundant sequence representation of all public
mRNA sequences'*.

Among all the above genome annotations,
RefSeq., UCSC and Ensembl, are well supported
for many organisms and broadly used because of
regular and automatic update. The choice of ge-
nome annotations has a dramatic effect on the

597 The complexity of ge-

RNA-seq data analysis
nome annotations is defined by the numbers of
genes, transcripts and exons. When conducting a
study that emphasizes the estimation of the repro-
ducible and accurate expression levels, a less
complex genome annotation may be preferred,
such as RefSeq and UCSC Known Gene. Howev-
er, simpler genome annotations may limit the op-
portunities for identifying or characterizing novel
transcriptional or regulatory mechanisms. When
carrying out research that aims to be more explor-
atory, a more complex genome annotation may be
suggested, such as Ensembl®’. More complex

genome annotation obtains more alignments,

which can help to identify more novel discoveries.

Table 1 List of various public genome annotations

Name Website
RefSeql?* http://www. ncbi. nlm. nih. gov/refseq/
Ensemblt?? http://www. ensembl. org/

UCSC Known Genel??
AceView!?"
Vegat?*l
GENCODE
H-InvDB"

CCDS#

http://genome. ucsc. edu/
http://www. ncbi. nlm. nih. gov/ieb/research/acembly/
http://vega. sanger. ac. uk/
http://www. gencodegenes. org/
http://www. h-invitational. jp/
http://www. ncbi. nlm. nih. gov/CCDS/CcdsBrowse. cgi
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1.2 Quality control and pre-processing of reads

Quality problems typically arise from se-
quencing itself or library preparation. They in-
clude low-confidence bases, low-complexity se-
quences, sequence-specific bias, positional bias,
untrimmed adapters, polymerase chain reaction
(PCR) artifacts, sequence contamination, etc.
These problems can seriously affect the down-
stream analysis®®. Quality control (QC) and
pre-processing is usually the first step in the
RNA-seq data analysis. Many tools are available
as shown in Table 2, and can be divided into two
categories i. e. ,"Raw” and "Aligned”’. The "Raw”
methods directly deal with the raw RNA-seq data
and have similar features. The quality control
step includes the investigation of read length, GC
content, quality score, sequence complexity dis-
tributions, sequence duplication, sequence con-
tamination, artifacts and the number of ambigu-
ous bases. In the pre-processing step, the se-
quence ends should be trimmed and unwanted se-

quences should be filtered. FastQCM* and PRIN-

SEQ"* inspect several metrics and provide re-

ports with information visualizations. PRINSEQ
also offers filtering and trimming functionality.
HTQC uses different strategies to remove low

B350 Trimmomatic can remove adapt-

quality reads
ers and trim reads in different ways based on
quality®’. These methods, except for FastQC
and FASTXP™, allow fast parallel processing of

03839 Once raw reads

large amount of raw reads
have been aligned to the reference genome, the a-
ligned data open up the new quality problems.
Quality scores that can be measured only with a-
ligned reads include saturation of sequencing
depth, read distribution between different genom-
ic feature types and coverage uniformity along
transcripts. The " Aligned” methods for aligned
data report many overlapping quality measures,
and also have their individual features. RNA-Se-
QC provides a particularly detailed coverage met-
ric report and can also compare different sam-
plest®™ . Qualimap offers elegant plots for satura-
tion and biotype distribution™! and RseQC calcu-
lates saturation status for splice junctions in addi-

tion to genes?.

Table 2 List of sequencing quality control and pre-processing tools

Name Website Category
FastQCH* http: / www. bioinformatics. babraham. ac. uk/projects/fastqc/ Raw
FASTX!™ http: // hannonlab. cshl. edu/fastx_toolkit/ Raw

PRINSEQ"" http: // prinseq. sourceforge. net/ Raw
HTQCH https: // sourceforge. net/projects/htqc Raw
NGS QCP http: / www. nipgr. res. in/ngsqctoolkit, html Raw
Meta-QC-Chain"*"! http: // computationalbioenergy. org/meta-qc-chain. html Raw
Trimmomatict®®! http: / www. usadellab. org/cms/index. php? page= trimmomatic Raw
RSeQCH? http: // code. google. com/p/rseqc/ Aligned
RNA-SeQCH www. broadinstitute. org/rna-seqc/ Aligned
Qualimap™*!! http: // www. qualimap. org Aligned

"Raw” presents the tools handling the raw RNA-seq reads and "Aligned” presents the tools handling the aligned reads.

Generally speaking, adapters and sequence
contamination need to be removed and base quali-
ty issues can be more subtle. In addition, quality
requirements depend on the subsequent research
goals. For example, aligners have differential
abilities to cope with erroneous bases. Trimming
low-quality bases can improve de novo transcrip-
tome assembly. Thus, users need to choose the

appropriate quality control tools to process the

raw or aligned reads according to research goals.
1.3 Read Alignment

The read alignment is the basic and crucial
step for aligning-first analysis methods. Aligned
reads provide the genomic location information
and allow to estimate where reads originate from.
Two factors, the complexity of reference genome
and the read length, directly influence the accura-

cy of read alignment. For mammalian. due to re-
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petitive and homologous sequences, short reads
are aligned to many genomic locations resulting in
the multi-mapping problem. Moreover, reads
from the splice junctions need to be split into sev-
eral segments across the introns and then aligned
to the reference genome sequences. But locating
the exon-intron boundaries takes much computa-
tional time because exons and introns have differ-
ent length. Furthermore, too short reads aggra-
vate the multi-mapping problem. However, too
long reads, which contain more sequencing er-
rors, decrease read alignment accuracy and com-
putational efficiency. Therefore, aligning short
reads rapidly and accurately is pivotal for RNA-
seq data to accomplish various downstream analy-
ses.

Many read aligners are proposed and can be
divided into unspliced and spliced aligners™!.
Fig. 2 shows mapping reads to different reference
sequences using unspliced and spliced aligners.
We found that unspliced aligners using reference
genome sequences discard some reads which con-
tain gaps of splice junctions. Therefore, un-
spliced aligners can avoid the spliced reads and are
thus suitable for aligning reads to reference tran-
script sequences. Basically, unspliced aligners
have two categories as shown in Table 3, namely,
Hash-based aligners and Burrows-Wheeler-Trans-
form (BWT) -based alignerst®. Hash-based

methods use hash tables to build upon quick see-

ding of alignment candidates and can be further

Reference genome sequence

Exon 1 Intron Exon 2

divided into two classes based on the types of in-
dexing, the read indexing and the reference inde-
xing. The read indexing splits and stores the se-
quencing reads in the hash table and the memory
usage depends on the size of reads and the read
length, such as SeqMap' and MAQ'™’. The
reference indexing handles the reference se-
quences and the memory relies on the size of ref-
erence sequences and the seed length, such as
MOSAIK", GNUMAP"", SHRiMP'*, Raz-
BWT-based methods a-

lign the entire reads instead of the seeds of reads

erS3M and Stampy™™.

against the substrings sampled from the reference
genome. To enable rapid read searching and re-
duce memory usage, BWT-based methods use
BWT, which is a reversible data compression al-
gorithm, to reorder the reference genome se-
quences for data structure compression, and then
retrieve the whole BWT-based suffix array for
reads aligning. Thus, these methods can signifi-
cantly reduce the memory usage and improve the
BW A2
Both strategies can be applied to

alignment speed, such as Bowtie2t!
and SOAP2%,
aligned reads, but they have significant difference
in performance. In practice, BWT-based methods
are obviously faster than Hash-based methods and
can reduce memory usage. However, the Hash-
based methods are more sensitive and can gener-
Table 4

shows the comparison results of SeqMap and

ate more accurate aligned reads’*,

Bowtie2 demonstrating the different performance

of approaches from the two categories.

Reference transcript sequence

Exon 1 Exon 2

Mapping reads to reference sequences

Exon 2

Exon 2

Unspliced aligner

Exon 2

Spliced aligner Exon 1

Fig. 2 Tllustration of mapping reads to different reference sequences using unspliced and spliced aligners
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Table 3 List of unspliced aligners

Name Website Strategy
SeqMapt*t] http: / www-personal. umich. edu/~jianghui/seqmap/ Hash-based
MAQM http: // maq. sourceforge. net/ Hash-based
MOSAIKM https: // code. google. com/p/mosaik-aligner/ Hash-based
GNUMAPH™ http: // dna. cs. byu. edu/gnumap/ Hash-based

SHRiMP"*#]

http: // compbio. cs. toronto. edu/shrimp/

Hash-based

RazerS3t http: / www. seqan. de/projects/razers Hash-based
Stampy"®"” http: / www. well. ox. ac. uk/project-stampy Hash-based

BW AL http: // bio-bwa. sourceforge. net/bwa. shtml BWT-based
Bowtie2t! http: // bowtie-bio. sourceforge. net/bowtie2/ BWT-based
SOAP25 http: // soap. genomics. org. cn/soapaligner. html BWT-based

"Hash-based” represents the corresponding methods based on hash table algorithm and "BWT-based” represents

the corresponding methods based on BWT algorithm.

Many reads span exon-exon junctions and
cannot be directly aligned by unspliced aligners.
However, these reads contain the most discrimi-
nable information for further inferring of isoform
expression and novel transcripts. Currently,
spliced aligners are proposed as shown in Table
5. These methods usually employ unspliced align-
ers to align firstly unspliced reads and then use
various strategies to align the rest reads contai-
ning spliced regions. According to whether to use
genome annotations, the existing methods are
classified into two categories, " Annotated” and

" "
De novo't",

The " Annotated” spliced aligners
detect the splice junctions based on known junc-
tions from annotations, such as

RUM"

genome
OSAP™ and JAGuaR""”, but cannot
The " De novo”

spliced aligners allow the detection of new junc-

identify new splice junctions.

tions without known genome annotations, such as

GSNAPP | OLEgo, SpliceMapt®® and SOAP-

194 This type of aligners predicts the exon-

Splice
intron boundaries using the "GT-AG"” "GC-AG"
and "AT-AC" patterns within introns. Some "De
novo” spliced aligners also provide the option of
using known genome annotations, such as To-
phat*%1, STARMY and GEM'™, and can be
deemed as a particular category, "Both”. In prac-
tice, because of optionality, the " Both” spliced
aligners are most widely used for detecting exon-

) In general, the " Annotated”

exon junctions
splice aligners are more accurate, faster and use
less memory. But "De novo” spliced aligners is
the unique choice for organisms without reference
genomes. In Table 4, the results of Tophat show
that the "De novo” algorithm needs more time and
memory to predict the exon-intron boundaries and

n " .
the " Annotated’ one obtains more accurate re-

sults.

Table 4 Accuracy, speed and memory of various aligners

Method Annotation Gene Isoform Alignment/ % Tim Memory/MB
UCSC 31 848 82 960 51.62 1 min 34 s 349
Bowtie2 RefSeq 26 367 54 064 46. 85 1 min 28 s 270
Ensembl 60 234 204 940 54. 14 1 min 43 s 508
SeqMap Ensembl 60 234 204 940 57.38 30 min 6 463
Annotated 58. 81 90 min 2922

Tophat .

De novo 55.32 164 min 4 145

The data is from SRX016359 dataset:57), which contains 11 712 885 single-end reads. Bowtie2 and SeqMap use reference tran-

. . . " " " "
scriptome sequences, and Tophat uses reference genome sequences with two options, "Annotated’ and "De novo'. The execu-

tion time is measured using CPU time on the same platform (4 Intel Xeon 3.2 GHz CPUs and 16 GB RAM).
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Table 5 List of spliced aligners

Name Website Category
RUMD https: // github. com/itmat/rum/wiki Annotated
OSA http: / www. arrayserver. com/wiki/index. php? title=0SA Annotated

JAGuaRP™ http: / www. begsc. ca/platform/bioinfo/software/jaguar Annotated
GSNAP® http: // research-pub. gene. com/gmap/ De novo
OLEgot http: // zhanglab. c¢2b2. columbia. edu/index. php/OLego De novo
SpliceMapt*®! http: / www-personal. umich. edu/~jianghui/ De novo
SOAPSplicel http: // soap. genomics. org. cn/soapsplice. html De novo
STAR" https: // code. google. com/p/rna-star/ Both
Tophatt*? http: // ccb. jhu. edu/software/tophat/ Both
GEML) http: // algorithms. cnag. cat/wiki/ The_ GEM_library Both

" " . . . . " "
Annotated” represents the corresponding aligners using the known genome annotation and "De novo' represents the de novo

spliced aligner. "Both” represents some de novo spliced aligners which also provide the option of using known genome annotation.

When aligning reads, the selection of align-
ers depends mainly on the type of reference se-
quences and research goals. For well-annotated
organisms, such as human, rat and mouse, etc. ,
the unspliced aligners can be chosen to align the
reads to reference transcriptome sequences for es-
timating the expression of known gene or iso-
form. When the genome annotations are incom-
plete or the study is to detect novel transcripts, it
is necessary to use the splice aligners to align the
reads to reference genome sequences. As an ex-
ample, Table 4 shows the different accuracy,
computational efficiency and memory usage of
typical aligners. This can help users to select a
suitable aligner. However, if the reference ge-
nome sequences are not available, the RNA-seq
data analysis needs to reconstruct the transcrip-

tome before aligning reads.
1.4 Transcriptome assembly

RNA-seq is a practical choice to obtain the
whole transcriptome of various organisms. Many
methods are proposed to reconstruct the full-
length transcripts from the RNA-seq reads, as
shown in Table 6. These methods adopt two dif-
ferent strategies for reconstructing transcrip-
tome, " Genome-guided” and " Genome-independ-

ent’%7,

In Fig. 3, a simple example is used to
show the principles of the two strategies of tran-
The " Genome-

. 4
guided” methods use reference genome sequences

scriptome assembly methods.

to align the reads and assemble the aligned reads
into transcripts. They naturally describe a gene as

a directed graph and the possible isoforms can be

represented by the paths of the graph. In the
graph, the node represents an exon or a sequence
segment, and the connection represents an exon-

199 Characteristics of the

exon splicing junction
"Genome-guided” methods differ in the candidate
transcript construction and algorithm optimiza-
tion. For example, Isolasso and iReckon enu-
merate all possible transcripts, while Isolasso
adopts LL1-norm and iReckon proposes a particu-
lar sparse constraint to select the candidate tran-

scriptst’®.

The "Genome-guided” methods depend
on a relatively complete and high-quality reference
genome that are available for the organisms of in-
terest, such as human, rat and mouse, etc. In
the other group of "Genome-independent” meth-
ods, the reads are broken into k£-mer seeds and ar-
ranged into a de Bruijin graph structure. Then
the graph is parsed to identify transcript se-
quences, which are aligned to the genome to cre-
ate gene annotations. At last, various algorithms
are applied to extract the possible isoforms.,
which are needed to explain all reads™’.

In practice, whether a " Genome-guided”
or "Genome-independent” method is selected
mainly replies on completeness of the reference
genome for the investigated organisms. If an or
ganism has a relatively complete and high-quality
reference genome, the "Genome-guided” method
is a sensible choice for expression quantification
and differential expression analysis. However,
when organisms have no available reference
method

ll < . ]
genome, the " Genome-independent”

is the best choice to reconstruct the transcripts.
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Fig.3 Transcriptome assembly methods"?"” (Reads originating from two different isoforms of the same gene are colored

black and gray. The left column of the figure is the workflow of "Genome-guided” method. The right column is ”

Genome-independent” method. )
Moreover, the read lengths from RNA-seq exper-
iments are usually from 50 bp to 500 bp (base
pair). These short reads are major challenges for
transcriptome assemblers, especially for the "Ge-

nome-independent” methods. More long reads can

obtain more accuracy for the transcriptome as-
sembly, but they simultaneously bring the lower
read quality. When the technology is getting ma-
ture to allow sequencing a full-length transcript

in one read, many challenges of transcriptome as-

Table 6 List of transcriptome assemblers

Name Website Category
IsoLassol®” http: // alumni. cs. ucr. edu/~liw/isolasso. html Genome-guided
Cufflinkst™ http: // cole-trapnell-lab. github. io/cufflinks/ Genome-guided
iReckon!™ http: // compbio. cs. toronto. edu/ireckon/ Genome-guided
Scripture!'") http: / www. broadinstitute. org/software/Scripture/ Genome-guided

SLIDEM
CLASS™
MITIEM™
Flipflopt™
Trinity'"®
Trans-ABySSt™
Oases™
Velvet!"]
Rnnotator-®"”

Bridger!®!

SOAPdenovo-Trans 2

http: / www. stat. ucla. edu/~jingyi. li/
http: // sourceforge. net/p/splicebox/wiki/CLASS/
http: // bioweb. me/mitie
http: // cbio. ensmp. fr/flipflop/
http: // TrinityRNASeq. sourceforge. net
http: / www. begsc. ca/platform/bioinfo/software/
http: / www. ebi. ac. uk/~ zerbino/oases/
http: / www. ebi. ac. uk/~ zerbino/velvet/
https: // sites. google. com/a/Ibl. gov/rnnotator/
https: // sourceforge. net/projects/rnaseqassembly/
http: // soap. genomics. org. cn/SOAPdenovo-Trans. html

Genome-guided
Genome-guided
Genome-guided
Genome-guided
Genome-independent
Genome-independent
Genome-independent
Genome-independent
Genome-independent
Genome-independent

Genome-independent
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semblers will be disappeared.
1.5 Gene and isoform expression quantification

RNA-seq technology directly sequences the
reads from the transcriptome and the gene and
isoform expression levels can be estimated from

Although RNA-seq has

many advantages in expression measurement

the sequenced reads.

compared to microarray, this task still poses

challenges. Firstly, the alternatively spliced
genes have more than one isoforms which usually
overlap, and a short read may be mapped to the
overlap region. It is universally recognized that
the number of isoforms related to a gene decides
on the difficulty of predicting isoform expression.
Secondly, the technological limitation of RNA-
seq inlibrary preparation causes non-uniformly
distributed ¢DNA fragments within the tran-
scripts of interest. Various biases, including the
5'and 3" end biases, local nucleotide composition
effect, such as priming or GCbias, or other tech-
nical biases"'™, lead to the non-uniform distribu-
tion of the reads along expressed transcripts.

Up until now, many approaches are available
for expression estimation, as shown in Table 7.
These methods can be simply divided into two
categories: the Poisson-based methods and the
generative statistic methodst™. The Poisson-
based methods commonly use the Poisson distri-
bution to model the distribution of reads, and the
generative statistic methods simulate the stochas-
tic process of read sequencing. Various bias cor-
rection strategies are proposed to compensate the
effect of diverse biases as mentioned above. For
example, NURD adopts a global bias curve for all
genes and a local bias curve which are estimated
using non-parametric models to correct the non-
uniformityof read distribution™*!. Poisson mixed
effects (POME) considers the base-specific varia-
tion and between-base dependence, which affect
throughout the tran-

read coverage profile

script®. Sequgio uses a random variable to re-

present the transcript-specific non-uniformity
effect, and then performs the joint estimation of

isoform expression and isoform-specific read dis-

[85]

tribution Our work, PGSeq, uses a Poisson-

Gamma model to account for the exon-specific bi-

861 Our approach applies Poisson

as for each gene
distribution to model the read counts and uses
Gamma distributed latent variables to capture the
overall exon-specific read bias for each gene®.
Except for PGSeq, the other Poisson-based meth-
ods only concern limited types of biases. Howev-
er, the generative statistic methods usually con-
sider more complex biases. Cufflinks uses a vari-
able length Markov model to learn the sequence-
specific bias on the surrounding sequences and
calculates the positional bias accordingthe relative
position of fragments in the transcript se-

quences.

BitSeq uses the same bias correction
strategy as Cufflinks™®7. Both methods use the
bias weight to select a fragment of a specific
lengthgiven a transcript. RSEM uses empirical
read start position distribution to represent the
non-uniformread distribution, which depends on
the fraction along the length of transcript in a giv-

(9] Fig. 4 shows that the accura-

enstart position
cy and computational efficiency from six popular
methods. Generally speaking, the generative sta-
tistic methods usually obtain more accurate re-
sults while the Poisson-based methods present
higher computational efficiency. But the Poisson-
based method, PGSeq, can simultaneously obtain
the most precise results and higher computational
efficiency.

The accuracy of gene and isoform expression
quantification is also affected by read alignment.
Reference genome sequences usually have many
repetitive and homologous sequences, which cau-
ses mapping ambiguities for a portion of reads™®.
Furthermore, it is difficult to correctly align the
reads spanning the splice junctions to the refer-
ence genome sequences. Thus, in order to obtain
accurate gene and isoform expression level, it is
recommended to directly align the reads to refer-

ence transcriptome sequences®® %7,

This is suit-
able for investigating the known transcripts and
genes. However, if the research goals are to de-
tect the novel genes and transcripts, it is inevita-

ble to align reads to the reference genome se-
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quences. In addition, some " Genome-guided”
transcript assemblers, such as Isolasso and
Scripture, can identify and quantify isoforms sim-
ultaneously. But these methods focus on identif-

ying novel isoforms and do not consider the se-

quencing biases. Alternatively, if the reference
genome is not available, the "Genome-independ-
ent” transcript assemblers (Fig. 1) should first be
used to reconstruct the transcriptome information

before expression quantification.

Table 7 List of methods for gene and isoform expression quantification

Name Website Category
rSeqt™™ http: // www-personal. umich. edu/~jianghui/rseq/ Poisson-based
NURDE® http: // bioinfo. au. tsinghua. edu. cn/software/NURD/ Poisson-based
POME!#4 http: / www. stat. purdue. edu/~ yuzhu/pome. html Poisson-based
MMSEQ! https: // github. com/eturro/mmseq Poisson-based
Sequgiot®™ http: // fafner. meb. ki. se/biostatwiki/sequgio/ Poisson-based
1QSeqt*? http: // archive. gersteinlab. org/proj/rnaseq/I1QSeq/ Poisson-based

PGSeqt®

https: // github. com/PUGEA/PGSeq

Poisson-based

Cufflinkst**? http: // cole-trapnell-lab. github. io/cufflinks/ Generative
RSEME http: // deweylab. biostat. wisc. edu/rsem/ Generative
IsoEM™] http: // dna. engr. uconn. edu/software/IsoEM/ Generative
BitSeq* https: // github. com/BitSeq/BitSeq Generative
Tigar2t®? https: // github. com/nariai/tigar2 Generative

BADGE!*] http: // www. cbil. ece. vt. edu/software. htm Generative

9
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Fig. 4 Accuracy and computational efficiency of various
expression quantification methods (The dataset
is from MAQC project, which provides about
1 000 qRT-PCR validated genes as benchmark
and two conditions, HBR and UHR, are used in
this comparison. The Pearson correlation coeffi-
cients between the estimated logarithmic gene
expressions and the qRT-PCR values are used to
evaluate the accuracy. The execution time is
measured using CPU time on the same platform
(4 Intel Xeon 3. 07 GHz CPUs and 24 GB
RAM))

1.6 Differential expression analysis

Differential expression (DE) analysis is the
fundamental objective in the RNA-seq data analy-
sis. For RNA-seq experiments, the sequencing

noise from the sampling process is inevitable, and

often the variability between technical replicates
can be largely described by Poisson distribution.
However, the high variability between biological
replicates can cause the overdispersion problem.
Therefore, most count-based methods, as shown
in Table 8, commonly use the negative binomial
distribution to address this problem™"”, such as
DESeq™, baySeq™*!, edgeR™" and sSeq. In ad-
dition, Voom estimates the mean-variance rela-
tionship and applies the normal linearmodel to fit

read counts ',

Non-parametric methods, such
as SAMSeq* and NOISeq"**!, do not assume
any form of the distribution, but rather rank the
genes based on their expression. These count-
based methods are suitable for detecting DE
genes. However, when the research goal is to
find DE isoforms, due to the read mapping ambi-
guity caused by sharing exons and sequence ho-
mology, it is inappropriate to directly use count-
based methods for detecting DE isoforms. There-
fore, a number of approaches are proposed to de-
tect DE isoforms and labeled as "Two-step” meth-
ods as shown in Table 8. These methods usually
are implemented in two steps. At the first step.

gene and isoform expression is calculated. Then
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the obtained expression is used to detect differen-

tial expression in the second step. For example,

0o4] | using the expres-

[105]
b

our previous work, BDSeq
sion level obtained from GamSeq adopts a
Bayesian framework to simultaneously detect DE
genes and isoforms with the consideration of the
expression measurement uncertainty, which can
account for both read mapping ambiguity and se-
quencing biases. The two-step methods usually

suggest using the recommended expression esti-

mation methods, e. g. Cufflinks recommended by

Cuffdiff2**! , MMSEQ by MMDiff"*"! and RSEM
by EBSeq"®.
tic (ROC) curves of eight methods in detecting

The receiver operating characteris-

DE genes for a benchmark are shown in Fig. 3.
MMDiff and BDSeq consider the expression meas-
urement uncertainty, thus obtaining relatively
higher area under the curve (AUC) values as well
Although the other
three two-step methods obtain lower AUC val-

as count-based methods.

ues, they still benefit from the ability to detect

DE isoforms.

Table 8 List of software for differential expression analysis

Name Website Category
DESeqt* http: // bioconductor. org/packages/release/bioc/html/limma. html Count-based
baySeqt*- http: / www. bioconductor. org/packages/release/bioc/html/baySeq. html Count-based
edgeRE™ http: / www. bioconductor. org/packages/release/bioc/html/edgeR. html Count-based
Voom!'"H http: // bioconductor. org/packages/release/bioc/html/limma. html Count-based

SAMSeqt4 http: // statweb. stanford. edu/~tibs/SAM/ Count-based

sSeqt?? http: / www. stat. purdue. edu/~ ovitek/Software. html Count-based

NOISeqt"! http: // bioinfo. cipf. es/noiseq/doku. php Count-based
Cuffdiffatos http: // cole-trapnell-lab. github. io/cufflinks/ Two-step
BitSeqH* https: // github. com/BitSeq/BitSeq Two-step
EBSeqt'"%! http: / www. biostat. wisc. edu/~ kendzior/EBSEQ/ Two-step
MMDifft7] https: // github. com/eturro/mmseq Two-step
rSeqDifft' http: / www-personal. umich. edu/~jianghui/rseqdiff/ Two-step
BDSeqt'* http: // parnec. nuaa. edu. cn/liux/ GSBD/GamSeq-BDSeq. html Two-step

In the RNA-seq data analysis, the choice of
the differential expression methods largely de-
pends on research goals. If identifying DE iso-
forms is of interest, the two-step method is an
appropriate choice. However, the comparison in
Fig. 5 has shown that the count-based methods
perform as well as the two-step methods on de-
tecting DE genes'™. Also, these methods di-
rectly process the read counts and are computa-
tionally more efficient than two-step approaches.
Thus, if DE genes are concerned, the count-based
methods are a sensible choice. Moreover, the
number of biological replicates also affects the
choice of DE methods. For a fair number of bio-
logical replicates (at least more than five repli-
cates per condition), it is beneficial to use the
such SAMSeq and
NOISeq, which do not make assumption on the

nonparametric methods,
form of the distribution of the observed data.
However, the current RNA-seq data generally

contain few biological replicates (e. g. two or

=
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DESeq=0.972
BaySeq=0.943

MMDiff=0.965
BDSeq=0.961

0.2 0.4 0.6

False positive rate

Fig. 5 ROC curves of various DE analysis methods
(The data is from MAQC project and 305 qRT-
PCR validated DE genes with high confidence
The AUC
value of each method is displayed in the leg-

end. )

are selected as the benchmark!'!.
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three replicates). The parametric methods which
assume a certain form of the distribution from
empirical RNA-seq data are suitable choices, such
as most count-based methods which assume the
negative binomial distribution of reads. There-
fore, users can choose the appropriate methods to
carry out the DE analysis based on research goals

and the size of RNA-seq data.
1.7 Data visualization

Data visualization is an essential component
of RNA-seq data analysis and receives more and
more attention. For the complexity of the RNA-
seq data, visualization can help the researchers to
intuitively analyze and interpret the intrinsic tran-
scriptome. Many genome browsers are designed
for this purpose and can be divided into web-based

[zl a5 shown

browsers and stand-alone browsers
in Table 9. These browsers can provide interac-
tive visualization of sequences, genome annota-
tion, multiple alignments, syntenic mappings,
short read alignments and more. Many standard
file formats are supported, such as GTF, GFF,
SAM/BAM and BED, etc.

Due to the data quality and flexible accessi-

bility, the web-based genome browsers are useful

in promoting biological research. First, the
browsers use the high-quality annotation data,
which is collected and integrated by many public
organizations. Second, researchers can use the
web-based browsers anywhere via the network
and a standard web browser, and avoid the soft-
ware installation in the local servers or desk-

uzg, web-based genome

tops Moreover, the
browsers contain some species-specific genome
browsers, which can provide more detailed anno-
tations for a particular species. For example, the
Flybase genome browser focuses on Drosophila

Genes & Genomes'™,

The stand-alone genome
browsers are suitable for the visualization of the
large locally-stored datasets, if web upload is pro-
hibitive. Currently. integrative genomics viewer
(IGV) is the most popular stand-alone genome
browser. A keycharacteristic of IGV is its focus
on the integrative nature of genomic studies, with
the support for both array-basedand next-genera-
tion sequencing data, and the integration of clini-

L) Fig. 6 shows an ex-

cal and phenotypic data
ample of using IGV to show the gene structure
and the read coverage of gene "Clor{63” between

two conditions.

Table 9 List of genome browsers for RNA-seq data

Name Website Category
Ensemblt?* http: / www. ensembl. org/ Web-based
ucsck! http: // genome. ucsc. edu/cgi-bin/hgGateway Web-based
MapViewt!! http: / www. ncbi. nlm. nih. gov/mapview/ Web-based
Flybasel!'*] http: / flybase. org/cgi-bin/gbrowse/dmel/ Web-based
Gyt http: / www. broadinstitute. org/igv Stand-alone
1GBH'® http: / www. bioviz. org Stand-alone

GenomeView!!'"

RNAseqViewer!®

http: // genomeview. org/
http: // bioinfo. au. tsinghua. edu. cn/software/RNAseqViewer/

Stand-alone

Stand-alone

Beside the above genome browsers, many
R/Bioconductor packages also provide powerful
tools to visualize the genomic annotations and a-
lignments. The core of the Bioconductor infra-
structure includes three packages i. e. , IRanges,
These

packages provide scalable data structures for re-

GenomicRanges, and GenomicFeatures.

presenting annotated ranges on the genome, with

special support for transcript structures, read

[119]

alignments and coverage vectors Moreover,

two packages, seqplot’?®’and Sushi?', are also
able to visualize RNA-seq data. For results of va-
rious RN A-seq studies, the R language can gener-
ate a multitude of different figures to display the
results, such as heatmap, Volcano plott'??, MA
plot and Venn diagram. For example, the Venn
diagram can show the common DE genes detected
by different DE methods!®’. In addition, Cum-
meRbund is a particular R package that is

designed to aid and simplify the task of analyzing
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1.8 Other analyses

The RNA-seq data analysis typically yields a
list of DE genes or isoforms which may play im-
portant roles in a given phenomenon or pheno-
type. However, this list often fails to provide
mechanistic insights into the underlying biology
of the conditions being studied™?). Therefore,
the gene set analysis groups a long list of individ-
ual genes into smaller sets of related genes or
isoformsaccording to biological knowledge data-
such as and

bases, gene ontology ( GO )

Kyoto Encyclopedi a of Genes and Genomes
(KEGG)™ | Many methods for gene set analysis
are proposed, as shown in Table 10. GSEAM?
and GAGE"®? are primitively designed to analyze

the microarray data, while they are easily extend-

1IGV example of gene "Clorf63” (The data is from MAQC project and gene annotation is from RefSeq database)

ed to deal with the RNA-seq data. Pahview work-
flow uses the output from the major RNA-seq
analysistools and then uses GAGE to carry out

the pathway analysis/*".

Due to the over-detec-
tion of differential expression for long and highly
expressed genes in RNA-seq data, GOseq'*" and
GSAseq®® account for the effect of isoform
length bias. Moreover, SeqGSEA integrates dif-
ferential splicing into the gene set enrichment

analysis®.

In general, the gene set analysis or
pathway analysis mainly depends on the accuracy
of differential expression analysis from RNA-seq
data.

Beside the gene set analysis, the network
analysis is also an important research field in the

high level analysis. The variation for the complex

phenotypes is usually caused by a set of interacted

Table 10 List of methods for gene set analysis

Name Website
GSEAL?28] http: / www. broadinstitute. org/gsea/
GAGE!? http: / www. bioconductor. org/packages/release/bioc/html/gage. html
GOseqt™H http: / www. bioconductor. org/packages/release/bioc/html/goseq. html

GSAseq ™ 1132
SeqGSEA!
GSAASeqSP1]

Graphite webt***!

http: / www. soph. uab. edu/Statgenetics/People/XCui/r-codes/
http: // bioconductor. org/packages/release/bioc/html/SeqGSEA. html

http: // gsaa. unc. edu/

http: // graphiteweb. bio. unipd. it/

* This method is named GSAseq by us.
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genes which are often constructed by different

(136) " The co-expres-

types of biological networks
sion networks can help researchers to gain new
insights into the function of genes, biological
processes, the global structures of the transcrip-
tome and the mechanism of complex diseases.
Lancu et al. first proposes the RNA-seq de novo
co-expression network, which is constructed by
the Weighted Gene Co-expression Network Anal-
ysis approach™™ . However, this method is de-
signed for microarray data and losses some useful
information contained in RNA-seq data. To fully
use the comprehensive information of the RNA-
seq data, canonical correlation analysis (CCA) is
used to construct the co-expression networks™!,
CCA measures the co-expression between two
genes using various strategies according to the
different data combination. Compared with mi-
croarray, the co-expression networks of RNA-seq
data allow better estimation of network proper-
ties, such as network density, connectively, cen-
tralization and heterogeneity. The network analy-
sis uses the gene or isoform expression level to
construct the co-expression networks. Therefore,
the read ambiguities and sequence biases directly
influence the expression quantification and indi-
rectly affect the co-expression network analysis.
The high level analysis of RNA-seq data in-
cludes gene set analysis, pathway analysis and
network analysis, etc. These analyses usually use
the results of the upstream analysis, such as a list
of DE genes or isoforms, and gene and isoform
expression level. Therefore, the problems in the
upstream analysis, such as read ambiguities, se-
quence biases and reference genome, etc., will
indirectly influence the high level analyses. It is
very crucial that a suitable method is chosen to
obtain more accurate results of the upstream anal-
ysis. Moreover, a larger number of tools have
been proposed for the microarray analysis and
some of them can be simply extended for RNA-
seq data analysis, but researchers need to consid-
er the discriminable characters of the RNA-seq
data, such as splicing junctions, isoform expres-

sion levels, and bias caused by isoform lengths.

In addition, other analyses or research tasks,

such as identifying fusion genes!'®’, detecting

tH4o) and discovering small

allele-specific expression
noncoding RNAsM,

ther understand the intrinsic biological mecha-

can help researchers to fur-

nism.,

2 Applications

With the rapid development of RNA-seq
technology in recent years, this technology has
been widely applied to diverse research fields,
such as disease studies, drug discovery and devel-

opment, bacterial transcriptome, etc.
2.1 Application to disease studies

The availability of the human genome se-
quence has allowed identification of disease-cau-
sing mutations in many complex diseases. How-
ever, finding the causative variations for most of
the common diseases remains a complex and diffi-
cult task. RNA-Seq has been fruitfully applied to
the study of cancer and host-pathogens interac-
tions, and it is taking first steps for studying neu-
rodegenerative diseases (ND) as well as neuro-
psychiatric diseases™* . Many RNA-Seq studies
have suggested that detrimental fusion transcripts
and alternative splicing may be involved in the

carcinogenesis of different tissues and organs,

(1447
b

such as breast!*, prostate'", soft tissue

[145]

melanocytes and lymphoid tissues andor-

1167 Most of them have discovered a consid-

gans
erable fraction of fusion transcripts which may al-
ter cell’s functionality and cause cancers. Howev-
er, the pathogenesis of ND remains mostly un-
known. Some published works use the RNA-seq

on the Alzheimer' s disease'*”’, Parkinson

[149]

[148]
b

Down Syndrome and cardiovascular dis-

easel7, ete. These works revealed the great po-
tential of using RNA-seq for human genetic disea-

Ses.

2.2 Application to drug discovery and develop-

ment

RNA-seq technology has been successfully
applied to drug discovery and development and is

able to identify drug-related genes, microRNAs
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and fusion proteins*r4,

For drug discovery,
identifying the potential drug target genes is a
great challenge. RNA-seq is a powerful technolo-
gy for investigating the drug-induced genome-
wide gene expression. Thus, many recent studies
have shown the applications of RNA-seq to identi-
fy drug-induced genes and significantly acceler-
identification of

ated the process of target

14 - For example, green tea has proven

drugs"
to be an effective chemopreventive agent for lung
cancer. RNA-seq revealed that the possible in-
volvement of Activator Protein 1 (AP-1) in tea
polyphenol-induced chemoprevention™!,  Fur-
thermore, drug resistance is a growing concern
for cancer patients undergoing chemotherapy.
Substantial evidences have shown that miRNA
significantly influence the regulation of drug re-
sistance™. RNA-seq is able to estimate miRNA
expression profile in cells. Xu et al. applied
RNA-seq to compare the expression level of 1 032
mature miRNAs in human leukemia K-562 cell
line to multidrug resistant (MDR) K562/ADM
cells induced by adriamycin treatment. The re-
sults show miR-381 and miR-495 might have the
potential to reduce drug resistance in leukemia
cells and provide a benefit to chemotherapy for

cancer patients/"!,

RNA-seq is becoming an in-
dispensable tool for drug discovery and develop-

ment.
2.3 Application to bacterial transcriptome

RNA-seq technology has enabled tremendous
leaps forward in understanding bacterial tran-
scriptome. One important advantage of RNA-Seq
is that it does not need prior knowledge of se-
quence information and is thus able to find novel
transcripts. As most of bacteria still have no
available reference genome or have only incom-
plete genome annotations, RAN-seq is very use-
ful for bacterial transcriptome analysis. For ex-
ample, an open source software system, Rock-
hopper, supports various stages of bacterial
RNA-seq data analysis, including aligning se-
quencing reads to the refenence genome sequences

by Bowtie2, quantifying transcript abundance by

rSeq, testing for differential gene expression by
DESeq and visualizing results by Integrated Ge-
nomics Viewer. It also allows the discovery of
novel genetic features, as well as permitting the
delineation of operons and untranslated regions,
allowing the improvement and extension of se-

[158-159]

quence annotation Some researchers also

successfully applied RNA-seq to the study of My-

[160]
b

coplasma pneumoniae Pseudomonas syrin-

Helicobacter pylori'®*! and Salmonella
RNA-Seq data analysis has

played an important role in the discovery of the

ganGl’ ’

enterica"'®, etc.

related biological knowledge.

3 Conclusions

We comprehensively reviewed the RNA-seq
data analysis, including genome annotation, qual-
ity control and pre-processing, read alignment,
transcriptome assembly, gene and isoform ex-
pression quantification, differential expression
analysis and data visualization, and introduced
other analyses in brief, such as gene set analysis
and co-expression network construction. For each
research field, we select some representative
methods, which are usually most classic or rela-
tively new, to introduce the goals, problems and
solutions.

A large number of available software tools
can be chosen in the RNA-seq data analysis.
Choosing suitable software to carry out interested
studies and selecting the optimal parameters for
the corresponding software are both crucial. They
both directly influence the final results and the in-
terpretation of the biological process. A suitable
software tool largely depends on the research
goals and reference genome sequences. Optimal
parameters need to be selected according to RAN-
seq data properties, such as single-end or paired-
end, the insert length, stranded or non-strand,
and etc. With a clear research goal, the appropri-
ate software and suitable parameters can help to
obtain better results and more meaningful biologi-
cal inference. For example, if the DE analysis of
known isoforms in the human brain is concerned,

an unspliced aligner with reference transcriptome
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sequences and two-step software for DE analysis
are sensible choices. However, since these tools
adopt various strategies and usually present dif-
ferent performance on the same dataset, there is
no benchmark to claim which software is the best
or the most appropriate. In addition, many fac-
tors, such as computational efficiency, memory
usage and user-friendliness, can also help for the
software selection. Ultimately, an optimal route
needs to be found for the selected software in or-
der to gain better results before inferring the final
biological decision. From the raw RNA-seq data
to the final biological decision, a series of soft-
ware for various studies are in need. For users, it
is inconvenient to compile and install each tool.
Therefore, the analysis pipeline containing a large
number of tools for various studies is the most
convenient choicel'® %77,

Beside the analysis methods, the genome an-
notations and sequencing technologies can also af-
fect the final results. Up to now, only a few or-
ganisms have relatively well-annotated informa-
tion. The genomes of most of species are still not
sequenced or well-annotated. However, even for
those well-annotated organisms, such as human,
rat and mouse, their genome annotations are still
incomplete and lose a lot of alternative splicing
events. In some RNA-seq studies, the genome
annotation is very important prior biological
knowledge. But the current methods are difficult
to remedy the incompleteness of the genome an-
notation, even for the de novo transcriptome as-
sembly. Although the next-generation sequencing
technologies are undergoing fast development and
have remarkably improved the transcriptome
analysis, they still have some limitations. For ex-
ample, the library construction step with PCR
amplification generates the inevitable biases and
the sequencing step brings the missing bases.
These drawbacks can increase the data noise and
result in incomplete information, which influ-
ences the accuracy of RNA-seq analysis. Current-
ly, the third-generation sequencing technology is
emerging, such as Pacific Bioscience and Nano-

[168]

pore Technologies Compared with the next-

generation sequencing technology, the third-gen-
eration sequencing has two major characteristics.
First, PCR is not needed before sequencing,
which shortens DNA preparation time for sequen-
cing. Second, the signal is captured in real time,
which means that the signal is monitored during
the enzymatic reaction of adding nucleotide in the
complementary strand. The third-generation se-
quencing technology offers many advantages,
such as dramatically longer read lengths, short
time and lower overall cost. For the newest prod-
uct of Pacific Bioscience, the average read length
is 10 000~15 000 bp, which is longer than that of
any next-generation sequencing technology. But
the sequencing depth is lower than next-genera-

1% In data analysis, aligning and

tion sequencers
assembling single molecule reads is more difficult
and requires more biological knowledge. Howev-
er, current aligners and assemblers are developed
to deal with short reads. Thus, new methods are
urgently needed for processing the longer reads
obtained from third-generation sequencing tech-
nology.

In the future, with the development of high-
throughput sequencing technologies and bioinfor-
matics methods, the researchers are able to inves-
tigate various species more easily and comprehen-
sively. Furthermore, the discoveries of the inves-
tigations will enrich the genome databases and
give more insights to understand the biological
processes. While the cost of sequencing technolo-
gies rapidly decreases, it will become a reality
that people can quickly and cheaply complete their
whole-genome sequencing. The sequencing infor-
mation for each person can help researchers to un-
derstand the mechanism of complex diseases and

facilitate doctors to give more pertinent therapy.
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