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Abstract: Model updating for aircraft in a high temperature environment (HTE) is proposed based on the hierar-
chical method. With this method, the problem can be decomposed into temperature field updating and dynamic
structural updating. In order to improve the estimation accuracy, the model updating problem is turned into a
multi-objective optimization problem by constructing the objective function which combined with residues of modal
frequency and effective modal mass. Then the metamodeling, support vector regression (SVR) is introduced to
improve the optimization efficiency, and the solution can be determined by adaptive weighted-sum method (AWS).
Finally, the proposed method is tested on a finite element (FE) model of a reentry vehicle model. The results show
that the multi-objective model updating method in HTE can identify the input parameters of the temperature field
and structure with good accuracy.
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0 Introduction

The United States is developing scramjet en-
gine technology that is expected to be needed by
the next generation of high speed air breathing
vehicles. NASA, through the X-43A program, is
developing hydrogen fueled scramjet engines and
has demonstrated Mach number of approximately
7 to 10. The structural integrity of proposed
high-speed aircraft can be seriously affected by
the extremely high surface temperatures and large
temperature gradients throughout the vehicle’ s
structure, which can seriously affect the struc-
ture's elastic characteristics. Fortunately, the fi-
nite element (FE) method, as a important and
practical numerical analysis tool, can be used to
simulate dynamic characteristics of structural.

Hence, the accuracy of FE model is crucial for
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structural dynamic analysis.

On the one hand, the complexity of dynamic
analysis in  high environment
(HTE), caused by the thermal effects, has made

it difficult to directly establish an accurate dy-

temperature

namic model; on the other hand, the FE model of
a structure is normally constructed on the basis of
highly idealized engineering blueprints and de-
signs that may not truly represent all the aspects
of an actual structure. As a result, the analytical
predictions from a FE model often differ from the
results of a real structure. These discrepancies
originate from the uncertainties in simplifying as-
sumptions of structural geometry, materials as
well as inaccurate boundary conditions. FE model
updating is a viable approach to increase the cor-
relation between the dynamic response of a struc-

ture and the predictions from a model. This
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method based on residuals between a measure-
ment set and the corresponding model predictions
to adjust the uncertain parameters of FE models
by optimization approach. Typical experimental
datas include the modal model (natural frequen-
cies and mode shapes), the frequency response
functions and effective modal mass. The choice of
objective function, and also the optimization ap-
proach, have been the subject of much research
and are well covered by the authors’ survey pa-
per[”].

If the structure of interest is represented by,
e. g. a large FE model, the large number of com-
putations involved can rule out many approaches
due to the expense of carrying out many runs. In
addition, the FE analysis programs at present do
not have parameterized modeling function since
the parameters need to be updated in the estima-
tion process. To overcome those problem, we
have focused on using metamodels (or surrogate
models) that can mimic the behavior of the simu-
lation model as closely as possible while being
computationally very efficient and convenient to
evaluate since the objective function have be pa-
rameterized. Amongst existing metamodels, such
as the conventional response surface method™/,
radial basic function""” neural networks! and sup-

Y, the latter are

port vector regression (SVR
found to be excellent predictors of numerical
model behaviour with small samples. In recently,
many additional applications (largely a conse-
quence of the increased use of computational ana-
lyses) have broadened the range of application of
SVR in the statistical and engineering literature.
Structural model parameter estimation prob-
lems based on measured modal data (e. g
Ref.[5—7]) are often formulated as weighted
least-squares problems in which modal metrics,
measuring the residuals between measured and
model predicted modal properties, are build up
into a single weighted modal residuals metric
formed as a weighted average of the individual
modal metrics using weighting factors. Standard
optimization techniques are then used to find the

optimal values of the structural parameters that

minimize the single weighted residuals metric re-
presenting an overall measure of fit between
measured and model predicted modal properties.
Due to model error and measurement noise, the
results of the optimization are affected by the val-
ues assumed for the weighting factors. The
choice of the weighting factors depends on the
model adequacy and the uncertainty in the availa-
ble measured data, which are not known a priori.
Different values of the weights result in different
optimal models and consequently different predic-
tions from the optimal models.

In this work, the structural model updating
in HTE using multi-objective optimization meth-
od is proposed. As one of metamodels, support
vector regression (SVR), will be introduced to
improve the efficiency of estimation, and adaptive
weighted-sum method (AWS), as a multi-objec-
tive optimization method, is employed to update

the structural parameters in HTE.

1 Hierarchical Methodology in Mod-
el Updating of High-Temperature
System

1.1 Model updating of temperature field

It is well know the mechanical and thermal
aspects are coupled and inseparable: high surface
temperatures and large temperature gradients will
affect the modal characteristics of the structure.
Similarly, the temperature distribution of a struc-
ture can also vary with its deformation, but this
change are so slightly that Nowinski” suggested
discounting the coupling in practice and separately
evaluating the temperature and deformation fields
in this order. Cheng et al. have proposed an mod-
el updating method in HTE based on hierarchical
ideology. With this method, the temperature
field updating of a structure is taken as the first
stage, and the temperature distribution achieved
from the former is imposed on the structure as a
thermal load to complete the model updating in
HTE. The thermo-physical properties are the im-
portant factors that affect temperature distribu-

tion of structure. In the case of thermal loads are
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determined, the model updating problem of tem-
perature distribution model can be translated into
the estimation of thermo-physical parameters
problem.

Inverse parameter estimation methods are
based on the minimization of an objective function
containing both estimated and measured tempera-
tures. Ordinary least squares estimator is by far
the most frequently used method for the estima-
tion of thermo-physical parameters as no prior
knowledge is needed, therefore, the optimization
problems can be formalized as follows

Jminz | Ty o — T () |
h=1 @b
1& . xL <y< XU
where y = {1oyzsee XN, } is the thermo-physical
parameter vector, T the temperature from the
hth sensor, and T4 the calculated temperature
from the mathematical model governing the heat
transfer phenomena with respect to the estimated
parameter vector, which is the general function of
the temperature. “L” and “U” represent the up-
per and lower bounds of parameter coefficient

vector, respectively.
1.2 Model updating of dynamic structure in HTE

As discussed before, the dynamic responses
in HTE, which can be expressed as™
J=Jw®OG v (2)
Where)} is the thermophysical parameters vector
after updating, and @,y are the temperature-de-
pendent parameters and temperature-independent
parameters of the dynamic model, respectively.
For model updating techniques, either identi-
fied modal parameters such as eigenvalues and
measured frequency

eigenvectors or response

functions (FRFs) are widely used as reference da-
tal’" . In recent years, some new dynamic pa-
rameters have also been used in the model upda-
ting. Aerospace engineers make wide use of the
effective modal mass concept in structural space-

02 The effective modal mass, as is

craft design
known, represents the participation of an elastic
mode to the reaction at the junction and therefore

the knowledge of such a parameter is useful for

the analysis of the dynamic behaviour of satellites
and aerospace substructures coupled with the
launcher. Therefore, the effective modal mass.,
as a complement could provide more information
for model updating to reduce the ill-posed prob-
lem which caused by the errors arise form uncer-
tainties.

The model updating problem has recently
been formulated in a multi-objective context!!®]
that allows the simultaneous minimization of the
multimodal indicators, which include eigenval-
ues, eigenvectors and effective modal mass, etc.
Then, the problem of model updating for identif-
ying the model parameter values that given the
best fit in all groups of modal properties can be
formulated as a multi-objective optimization prob-
lem. In this work, the multi-objective model up-
dating method based on residuals of modal fre-
quency ( w ) and effective modal mass ( M) are
optimization

introduced, the multi-objective

problem can be written as

N ~ A
. ol (0G0 +¥) — w0 (B() +7)
Min. J, = > |% ~
in. Ju ; W (00 +7)

Nm

Min. J, = > [M: @G »v) — M: 0 »p) |

i1
st 0-<<o<<@"

(€D
where @ = {0, .0, ,+ 20, } is the parameter vec-
tor. The most popular way of solving the multi-
objective optimization problem is to reduce it to a
scalar problem of the form

JOQ 722 =T 0 »¥) + 4.1, 0 1)

€Y
where J is an aggregated, weighted sum of the in-
dividual objectives, the relative importance of the
residual in different modal parameters are reflec-

ted in the choice of the weights A;. Typically,
weights are chosen such that 2 Ai=1 andA; =0

leading to a convex combination of objectives.
Although the weighted-sum approach is sim-

ple to understand and easy to implement, the tra-

ditional weighted-sum approach has two main

14] .

drawbacks which are hard to avoid"'" . First, an

even distribution of the weights among objective
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functions does not always result in an even distri-
bution of solutions on the Pareto front; Second,
the weighted-sum approach cannot find solutions
on non-convex parts of the Pareto front, although
such non-dominated solutions (Pareto optimal so-
lutions) do often exist. For that reasons, Kim""
propose a new adaptive method, based on the
weighted-sum approach, for multi-objective opti-
mization—adaptive weighted-sum method
(AWS). In this approach, the weights are not
predetermined, but they evolve according to the
nature of the Pareto front of the problem. The
AWS algorithm produces an even spread of points
along the Pareto front, even for problems for
which the relative scaling of the objectives are
vastly different. Firstly, the uniform step size of
the weighting factor AX is determined. By using a
large step size of the weighting factor, AA., a
coarse representation of the solution is generated
and regions where more refinement is needed are
identified. The specific regions are then designat-
ed as a feasible region for sub-optimization by im-
posing inequality constraints in the objective
space. In this region, the typical weighted-sum
multi-objective optimization is performed. The
algorithm will terminates when all the regions of
the Pareto front reach a pre-specified resolution.
More details about the AWS method in terms of
found in

advantages and drawbacks can be

Ref. [14].

2 Overview of Support Vector Re-

gression

SVR-based FE model updating is an ap-
proach to achieve the global approximations of the
structural response feature objectives and con-
strains based on functional evaluations at various
points in the design space. Let (x;,y,) s,
(x,+y,) » where x; € R" and y; € R” are the
training data points available to build a egression
model. The SVR algorithm applies a transforma-
tion function @ to the original data points from
the initial input space ( R* ) to a generally higher

dimensional feature space (F). In this new space,

a linear model f is constructed, which represents
a non-linear model in the original space
®.R"—>F,we F
f(@)=<w,®(x) )D(x)+b (5
When the identity function is used, i.e. @(x) —
2, no transformation is carried out, and linear
SVR models are obtained.

The goal when using the e -insensitive loss
function is to find a function f that fits given
training data with a deviation less or equal toe ,
and at the same time is as flat as possible in order
to reduce model complexity. Slack variables &;,&/
are introduced to allow error levels greater than
e » leading to the following optimization problem

b
min. %le\z—i—coz(a%—éi)

i=1

sete vy —w,@(x)) —b<e—& i=1,",p
w,D(x;))+b—y, <e—& i=1,,p
&.6 =0

(6)

where || w| ?, the structure risk, is used to re-
present the complexity of the surrogate model.

1
E (& + &) is the empirical risk, used to repre-

i=1

sent the error of surrogate model. The penalty
coefficient ¢ is used to balance the structure risk
and empirical risk. A Lagrange function is con-
structed. Once applying saddle point conditions
to solve the problem stated in Eq. (3), the fol-

lowing formulation is obtained.

max *L
T

i

P
DVar—a ) (e —a) )

asa ij=1

»
(@) @)+ D) (s —a Dy —

i=1

d (1
e, (e +a)

i=1

1
s. t. 2((1, _(1,'x ) :070 <ai7(1ix < (:7

i=1

i=1.2,.p

This is the quadratic optimization problem
which has to be solved to obtain the solution of
the SVR model. This solution will be function of
the dual variables a; and «;. Using saddle point
conditions it can be shown that Eq. (8) holds!™.

Replacing this expression in Eq. (1), the final
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solution of the SVR algorithm is obtained.

b
flo)=> (e, —a/ VK(xisx) +b (&)
i=1
where the expression K(x;,x;) is known as the
kernel function, which is equal to (@(x;) ,
@(x;)) ", Some of the most commonly used
Kernel Function include

(1) Polynomial: k(x,x;) = ((x,x;) + c)?,

P € R,c =05
(2) Gaussian: k(z,x;) = expl—| = —
x; 1%/ s (9

(3) Exponential; k(x,2;) =exp(—a | x —
)sa > 0;

The penalty coefficient ¢ can be determined

x;

by cross validation method.

3 Numerical Examples and Discus-

sion

The FE model of reentry vehicle structure in
an HTE will be used as an example to check the
feasibility of the multi-objective identification
method for structural model updating methodolo-
gy proposed in this paper, as shown in Fig. 1. A
simplified system of the reentry vehicle and its in-
ternal structure, by assuming that the aircraft is
in the sub orbital flight and will be subjected to
extremely high surface temperatures and large
temperature gradients. The model comprises two
parts: the surface of reentry vehicle is made by
ceramic matrix composites (C-SiC) and internal
structure made of oxide dispersion strengthened
super alloys (PM1000), both of them are exist in
inside and outside of the structure in order to
withstand the high temperatures generated by
aerodynamic heating, interlayer with reinforcing
ribs connected. The ambient temperature is
20 °C, and we ignore the influence of installation
location of bolts at the specimen on the tempera-
ture distribution.

It is possible to imagine many different pa-
rameterizations for updating the FE of the reentry
vehicle structure. In this paper, the heat transfer
derivative of cone and pyramidal structure, y, and

X2+ are chosen as the updating parameters, which

1.00+003

9.83+002

7.6

7.50+002

Fig. 1 Temperature distribution of reentry vehicle and

its cutaway view of FE model

have significantly effects on temperature distribu-
tion of the reentry vehicle by using sensitivity a-
nalysis. Similarly, the elastic modulus of cone E,
and thickness of pyramidal structure ¢, are chosen
as updating parameters for structural dynamic
model updating. Then, we will employ the SVR-
GS to update the FE model of thermal transfer
and dynamic structures, respectively, based on
hierarchical method in HTE proposed by Ref. [9]

once they are confirmed to be updating parame-

ters.
Table 1 Initial design space of thermal parameters modific
Bound o /(W e mm ') x2 /(W e mm~ ')
Upper bounds 0. 25 0.14
Lower bounds 0. 35 0.26

Table 1 shows the initial design space of
thermal parameters by trying. The normalization
process is described as transition from the original
interval [ ;s x5 ] of the design variables z; to the
new interval [ —1, 1] of the design variables y; ,
where i =1,2,++-,k for convenience. Assume that
the target values of required thermal correction

parameters are ; = 0. 3 W/mm and a, =0. 2 W/
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mm, which are used to calculate temperature dis-
tribution as the real value. Pick up 16 sample
points randomly using the Latin hypercube design
in the initial design space of thermal parameters,
and calculate the temperature value as the theo-
retical value. Approximately substitute the SVR-
GS surrogate models for the relation between ob-
The tem-

perature residual model is shown in Fig. 2 in the

jective function and design variables.

form of SVR-GS. Then we get the optimal solu-
tion by the genetic algorithm owing to their excel-
lent performance in the global optimization prob-

lem. The updated thermal parameter values are

shown in Table 2.
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Fig. 2 SVM-GS surrogate model

Table 2 Modified thermal parameter values

that the temperature distribution of vehicle calcu-
lated by the updated parameters agrees well with
Then, the

process of structural dynamics model updating is

the true temperature distribution.

conducted based on the updated steady-state tem-
perature distribution. The 16 sample points are
selected randomly by the Latin hypercube design
in the initial design space of each thermal parame-
ter, and the first fourth-order natural frequency is
calculated as the theoretical value. Assume that
E,=90 GPa and t, =3 mm are the error resource
of structural dynamics parameters needed to be
updated, and calculating the first fourth-order
natural frequency of vehicle in HTE as experi-
mental values based on the ture values. The re-
siduals of the theoretical value and the experimen-
tal value of each order natural frequency and ef-
fective modal mass are built by Eq. (3), respec-
tively. Similarly, the SVM-GS predictor of objec-
tive function in Eq. (3) could be established to es-
timate the elastic modulus ( E;) and thickness
(t,). The identified Pareto curve is composed of
15 Pareto optimal solutions and shown in Fig. 3
by using the AWS described above.

Tables 3—4 present the updated parameters

and the errors of reentry vehicle dynamic charac-

Method o /(Wemm ') a /(Wemm ') o e AWS. Tt is ob d that th .
SVM.GS 0.306 8 0.209 0 teristic using . It 1s observed that the maxi-
SVM-ZS 0.303 5 0.212 4 mum error of updated parameters is no more than

Table 3 shows the temperature deviations be-
fore and after modification for A, B, C, D, E, F
(Fig. 1) six points. We found that the largest
temperature deviation based on the SVM-GS

model is no more than 0. 909 9% , which indicates

2.727%, and the maximum error of updated fre-
quency is no more than 2. 9%. There are slight
differences between the parameters of the updated
model and the test ones, which indicates that the
model updating method proposed in this paper is

available for practical applications.

Table 3 Comparison of test frequencies with updated temperature

Error of
Measuring Initial Updated by Updated by  Error of updated
Real/C Initial/C updated by
point error/ % SVM-GS/°C SVM-ZS/C by SVM-ZS/ %
SVM-ZS/ %
A 794.520 7 707.427 0 10. 961 8 792.049 4 0.3111 791.777 9 0.345 2
B 812.786 6 726.883 9 10. 568 9 809.294 5 0.489 8 808.910 8 0.476 8
C 843. 2561 759. 402 3 9.944 0 838.099 8 0.6115 837.526 5 0.679 5
D 874.698 1 793.241 4 9.312 6 868.038 5 0.761 4 867.262 9 0.850 0
E 899.443 5 828.783 3 7.856 0 907.703 0 0.909 9 898. 450 2 0.110 4
F 959.182 4 884.612 4 7.774 3 951.455 0 0. 805 6 950. 508 7 0.904 3
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Table 4 Initial design space of dynamic structural updating Table 5 Comparison between updated parameters and real
parameters parameters
Bound E,/GPa t,/mm No. E,/GPa  Error/% t,/mm Error/ %
Upper bounds 80 2.5 1 89. 539 —0.512 3.081 8 2.727
Lower bounds 100 3.5 2 89.572 —0.476 3.072°9 2.430
3 89.603 —0.441 3.064 3 2.143
040 = 4 89.630  —0.411 3.0561  1.870
. ° 5 89.653 —0. 386 3.048 1 1.603
° 6 89.670 —0. 367 3.040 3 1. 343
030 ©® 7 89.682  —0.353 3.0327  1.090
al ‘. 8  89.686  —0.349 3.0254  0.847
0.25 .. 9 89.720 —0.311 3.018 4 0.613
o 10 89. 755 —0.272 3.011 4 0. 380
020 e o 11 89.812  —0.209 3.0046  0.153
0.15 ) ) ) ) ) ) 12 89. 897 —0.114 2.997 7 —0.077
0.282 0.284 0.286 0.288 0.290 0.292 0.294 13 89.958 —0.047 2.991 0 —0. 300
J, 14 90. 101 0.112 2.984 1 —0.530
Fig. 3 Pareto frontier calculated by AWS 15 90.219 0.243 2.9772 —0.760
Table 6 Comparison between updated results and experiment values of Pareto frontier
Pareto Error of frequency/ % Error of effective modal mass /%
front 1 2 3 4 1 2 3 4
1 1.453 2 1.802 4 1.937 6 2.014 3 0.987 6 1.121 3 1.243 7 1.435 2
2 1.521 4 1.923 5 1.987 5 2.1537 0.953 4 1.098 6 1.210 7 1.410 2
3 1.634 7 2.012 4 2.168 4 2.2415 0.901 4 1.068 7 1.184 7 1.384 3
4 1.710 4 2.104 3 2.219 6 2.3314 0.873 7 1.021 7 1.159 4 1.357 4
5 1.784 3 2.175 1 2.278 1 2.397 4 0.853 4 0.984 3 1.124 6 1.321 8
6 1.832 4 2.234 2 2.348 9 2.4317 0.827 9 0.953 4 1.098 9 1.304 1
7 1.895 3 2.294 6 2.387 9 2.497 3 0.801 7 0.934 7 1.067 4 1.274 6
8 1.934 8 2.354 7 2.454 8 2.534 7 0.753 9 0.901 6 1.024 7 1.243 8
9 2.014 2 2.418 6 2.510 4 2.575 1 0.7318 0.871 7 1. 005 4 1.210 9
10 2.143 1 2.506 8 2.592°5 2.624 7 0.705 6 0.857 9 0.975 4 1.187 6
11 2.210 4 2.604 2 2.610 7 2.678 4 0.679 4 0.824 6 0.946 3 1.156 4
12 2.298 7 2.653 1 2.696 7 2.713 8 0.653 7 0.798 9 0.910 7 1.124 8
13 2.321 4 2.706 7 2.740 5 2.754 8 0.627 3 0.772 1 0.881 3 1.097 3
14 2.457 6 2.754 3 2.796 4 2.847 3 0.593 8 0.7517 0.852 9 1. 065 7
15 2.501 2 2.834 7 2.831 4 2.901 2 0.577 3 0.7353 0.822 7 1.003 5

4 Conclusions

An inverse approach for solving the model
updating in HTE is presented. The following
conclusions can be drawn:

(1) By employing the hierarchical method,
we decompose the problem into temperature field
updating and dynamic structural updating. To

improve the efficiency and robustness of estima-

tion, the proposed method is constructed from
SVR and AWS by turning the estimation of phys-
ical properties into a multi-objective optimization
problem, with an approach of constructing the
objective function, which combines the residues
of modal frequency and effective modal mass.
The method is verified by an FE model of the re-
entry vehicle with respect to the effect of temper-
ature change.

(2) The developed method based on multi-
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objective optimization can improve the stability
which influenced by the error of SVR.

(3) The estimation algorithm is proposed
based on the thermal analysis module of MSC.
Nastran code thus can be applied to estimate the
physical properties of complex structures for

model updating.
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