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Abstract: A high-precision nominal flight profile, involving controllers’ intentions is critical for 4D trajectory esti-
mation in modern automatic air traffic control systems. We proposed a novel method to effectively improve the ac-
curacy of the nominal {light profile, including the nominal altitude profile and the speed profile. First. considering
the characteristics of trajectory data, we developed an improved K-means algorithm. The approach was to measure
the similarity between different altitude profiles by integrating the space warp edit distance algorithm, thereby to
acquire several fitted nominal flight altitude profiles. This approach breaks the constraints of traditional K-means
algorithms. Second, to eliminate the influence of meteorological factors, we introduced historical gridded binary
data to determine the en-route wind speed and temperature via inverse distance weighted interpolation. Finally, we
facilitated the true airspeed determined by speed triangle relationships and the calibrated airspeed determined by
aircraft data model to extract a more accurate nominal speed profile from each cluster, therefore we could describe
the airspeed profiles above and below the airspeed transition altitude, respectively. Our experimental results
showed that the proposed method could obtain a highly accurate nominal flight profile, which reflects the actual
aircraft {light status.
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0 Introduction

Airspace resources and air traffic congestion
have been rapidly decreasing due to the fast-ex-
panding global aviation industry. Acknowledging
this dilemma, the United States and Europe have
planned and implemented a next generation air
traffic management system, whose core technolo-
gy is 4D trajectory-based operation'. As 4D traj-
ectory prediction with high precision has become
critical, its essential issue of mining the nominal
flight profile, including intentions of controllers,
has also become pivotal. It is necessary to develop
a state-of-the-art method to improve the accuracy

of the nominal flight profile, so that changes in
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the aircraft flight status can be predicted in ad-
vance and controllers can receive necessary infor-
mation to handle aircraft conflicts timely.

In recent years, the important role of 4D
trajectory prediction in air traffic automation sys-
tems has been widely studied. Two types of algo-
rithms are employed for this study: (1) Methods
based on an aircraft dynamic model. For exam-
ple, Coppenbarger developed a method for 4D
trajectory prediction based on an aircraft dynamic
model in take-off and climbing phases™. Gong
and Chan proposed a approach that employed a
climbing timetable from the flight performance
manual to obtain aircraft aerodynamic models and

dynamic equations for trajectory estimation"*.
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Wu and Guo utilized a numerical integral algo-
rithm and a simplified algebraic algorithm to cal-
culate flight profiles in terminal areas'’. A kine-
matics model established on the flight phase can
allow trajectory prediction, but the results are not
ideal due to the lack of consideration of meteoro-
logical factors and performance errors for differ-
ent aircraft types. (2) Fitting methods based on
the center trajectory using data mining technolo-
gy. For example, Gariel et al. proposed a K-
means clustering method based on radar data to
monitor aircraft in terms of their actual operation
status™. For busy areas with many airports,
Leiden and Atkins used the clustering method
based on grid tracking to analyze different air-
ports, thereby to determine the average trajecto-
ries of different aircraft in the arrival and depar-

), Wang and Huang analyzed aircraft

ture phases
flight data using the fuzzy clustering method in
the arrival phase and calculated the average center
trajectory’’!. However, the methods mentioned
above are limited within the data gleaned only
from arrival or departure phases rather than the
entire flight profile. Therefore, a new concept
called the basic flight model was proposed for
building horizontal trajectories, altitude profiles,
and speed profiles depending on the flight phases,
but this method cannot obtain the entire flight
profile in an effective manner due to the lack of

8], Xing et al. proposed a

meteorological factors
novel method based on aircraft meteorological da-
ta relay (AMDAR) data to generate a flight pro-
file, which can obtain the nominal flight altitude
profile based on the dynamic space warping algo-
rithm and the speed profile based on a hybrid
method that combines the large oval distance al-
gorithm with the base of aircraft data (BADA)
model® . However, AMDAR data have a large
sampling interval, so it is not accurate to use the
large oval distance between two trajectory points
as the aircraft flight distance. Furthermore, the
time accuracy of AMDAR data is not adequate,
and thus the nominal speed profile includes spe-
cific errors.

To determine the actual aircraft flight sta-

tus, we proposed an improved K-means algo-
rithm to cluster the altitude profiles of historical
trajectory data, thereby to obtain several centers
of the flight profiles, i.e. , fitted nominal altitude
profiles, without relying on the Newtonian me-
chanics model. Second, we developed a method
for integrating the historical meteorological data
and speed conversion model based on BADA to
obtain the nominal speed profiles. Hence, combi-
ning these methods with airway meteorological
forecasts could revise the estimated flight trajec-
tory in order to obtain a more accurate 4D trajec-

tory.

1 Generating Nominal Altitude Pro-
files

1.1 Flight altitude profiles and their characteris-

tics

The flight altitude profile is a two-dimen-
sional image that represents the relationship be-
tween the flight altitude and range, i. e., the
trajectory in the vertical direction of a geographic
coordinates system. As shown in Fig. 1, a typical
flight altitude profile can be divided into three
stages: a—d represents the climbing stage, e—f
the cruise stage, and g— the descent stage. The
specific flight altitude parameters for each stage

were described in Ref. [11].
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Fig. 1 A typical flight altitude profile

Secondary surveillance radar (SSR) can ob-
tain real-time trajectory data, where the scan cy-
cle is usually 3—5 s, which means that flight
trajectory data are not updated continuously, but
in a form of a series of discrete trajectory points.
Let M={L,,L,,
flight altitude profiles with the same origin and

,L,} be the set of n historical

destination, where each profile L, = {/} ,I7,+-+,[7}
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with unequal length comprises m historical points
(i denotes a serial number of a profile). Let I/ &
H X D be an arbitrary point, where j is the point
index, HC R embeds the altitude-stamp varia-
bles, and D C R the distance-stamp variable, 1.
e., li=Chi,s!), where hi € H and s! € D, with
the constraint of s >s" whenever m >n. There-
fore, the characteristics of the flight altitude pro-
file can be summarized as: (1) Each profile com-
prises discrete points; (2) The length of each
profile is unequal; (3) There is a delay that corre-
sponds to the distance shaft between the two pro-

files.
1.2 Altitude profile measurment based on SWED

Marteau designed a time warp edit distance
algorithm™* based on the characteristics of his-
torical trajectory data. The method performed
better than classic dynamic time warping algo-

L1 - hecause it involved the influence of

rithms
the non-matching cost and distance deviation so as
to measure the distance between time sequence
trajectories. but it lacked the limitation of a time
warping degree. Thus, considering the relation-
ship between the flight altitude and distance, we
proposed an improved space warp edit distance
(SWED) algorithm to measure the distance be-
tween two profile point series. The proposed
method constructs a cost function to calculate the
influence of non-matching cost and distance devia-
tions.

Let L.? be the set of finite profile point se-
ries; LY*={l.,0%,+-+,1’}, where the superscript
is a discrete distance index that varies from 1 to
p» and the subscript the serial number of a pro-
file. Q represents the empty distance series (with
null length) and by convention, LY°=, so Q is
the member of set LY”. |LY”| is the length of
L.?. A denotes the null sample. For a pair of dis-
tance series samples, (I.,0/)# (A, A) is written
as l'—>1l,, where if I/, ZA and I/, 7= A, I, =1 is
called a match operation; if Z=A, [,—A is called
a delete L, operation; and if [, =A, A—1 is called
a delete L, operation.

We defined the similarity between any two

profile point series L, and L, with finite lengths of

p and ¢, respectively, as

Sy (L7 L) =

Ouy (L1 Ly D)+ —>A)
mins &y, (L7, Ly ™)+ —14) Match (1)
WSA,V(L}"’ Ly D) +T(A—>19) Delete /4

D= =dt, 1) +Fa=dp (Rt ) +y -
(st—st7)+2A

A=) =dt 19 +d 015 =dp (b h) +
dip (A" hy ') +y o (st — st |+

Delete ¢

st —st ' D)
A=l =d 3,15 )+ a=dp (hS . hS ') +y .
(s§—s3 +2A 2

where p—=1, g=1, and I'" is an arbitrary cost
function, which assigns a nonnegative real num-
ber I'(14—14) to each edit operation I/—>1%. (A=
0) and y denote the non-matching constant penal-
ty and distance penalty coefficient, respectively.
The recursion is initialized for i>>1 and j>1, by
setting
Siy (L1, LY =0
Oy (L1 L37) =00 3
Oy (L7 Ly") = o0
The rules of the matching and deleting oper-
ation are as follows. (1) The editing process is
performed from left to right, and if 7 is an index
on the segments of L, and j on the segments of
L, , the initial process setting is i=j=1. (2) A
matching operation adds one to ¢ and j simultane-
ously, which are denoted by i<=i+1 and j<;+1.
A deleting L, (L,) operation adds one to :(j) on-
ly, which is denoted by i<—i+1(j<j+1). (3)
After segment 7 (j) in L, (L,) has been processed
using either a matching or a deleting operation, it
is impossible for it to be edited again. A recursive
algorithm is conducted to complete the overall
process therefore to obtain the final global mini-
mum cost function value.
1.3 Clustering and fitting nominal altitude pro-
files based on an improved K-means algo-

rithm

Traditional K-means clustering algorithms

set the value £ and initial altitude profile centers
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randomly, usually leading to the clustering re-
sults trapped by local optima'®'®, In addition,
traditional algorithms are no longer applicable to
generating cluster centers, given the characteris-
tics of the altitude profile. Therefore, we pro-
posed a nominal altitude profile clustering and fit-
ting method based on an improved K-means algo-
rithm to obtain the & fitted altitude profile centers

in an effective manner. The technical framework

of the method is shown in Fig. 2.

Improved K-means
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Fig.2 Technical framework of the improved K-means

algorithm

In order to determine £ initial altitude profile
centers, we proposed a novel concept , i.e., an
altitude profile object. For any altitude profile ob-
ject L, , if the condition duq (L,sL,) <& is met
by taking a threshold &, then the object number
Let M={L,,
L,,,L,} be the set of altitude profiles and the

can be defined as the density of L,.

profile with the maximum density in the set M is
regarded as the first initial cluster center Z.
Then, the second initial center Z, is determined
by seeking the profile farthest from Z, and the in-
itial altitude profile center Z, is determined as
Z,=Z:: Y j<n, min{duai(Z:+Z)) ydewea(Z:+Z5) s
= minl{dwad (Z s 2)) sdwed (Z; s Z5) 000}
2<i<n €Y)
Davies-Bouldin index (DBI) is used to syn-
thetically measure the separation degree of the in-
tra-cluster and the condensation degree of inter-
DBI,

clusters. The minimum DBI value, i. e. ,

>DBI, . can determine an optimal cluster num-

ber. The model equation is summarized as

Zmax{ S. + S, (5)

DBI =
dwea(Z,s2,)

u=1
dswcd (Zu 1) Z'v ) the

distance between the cluster center Z, in cluster u

where £ is a cluster number,

and Z, in the cluster v, and S, the standard error
between each trajectory and the cluster center Z,
in the cluster u.

The method used for determining the cluster
center based on the traditional K-means algorithm
cannot be applied to altitude profiles, so we pro-
posed a novel algorithm for generating cluster
centers by integrating the weight and matching
rules of SWED. The core strategy of the algo-
rithm is to superimpose two arbitrary intra-clus-
ter profiles repeatedly. Assuming that Ly denotes
an altitude profile that is not superimposed in the
cluster C, and Ly, a center that is superimposed,
the algorithm for generating the center between
the altitude profiles Ly and L, is as
Loow =l 1€ L1 [ Ly [}

{w1 (Blast s St ) T2 (R T 7Csla — 58D 5580 3 (1)
{1 (M s Sta) T2 Cws LAN +7 (sl — 5300 1+

1 i [P Ty — s Tows s Faa s CID
:{w1(1,-,s‘,y )erg(ynsy, i1, [ L 1=

an XtawY=Z (6)
Accordingly, L, can be represented by:. Z =
w X+t Y, where ( [ ) denotes SWED matching.,
i. e. » one-to-one matching directly based on the
segmented points, and (][ ) SWED non-matc-
hing, employing a strategy for one-to-two matc-
hing in the interior points, where the two matc-
hing points are determined by the minimum dis-
tance and second minimum distance; Al the alti-
tude of a point in L ; A% and AN ' are the alti-
tudes of points in Ly; w; is a weight determined
by the superimposed intra-cluster profiles; w, a
weight determined by the remaining intra-cluster
—uw;) are the weights de-
', which
Let X be the matching

profile, and w; and w, (1
termined by two profile points /4 and /4
are calculated by Eq. (8).
matrix, Y the matched matrix, and Z the center

generating matrix
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X1 S‘Il V1 Syl
Xz Sa, N2 Sy,
Liw:X= Ly Y=

Ln \lu 2Xn Y Syu 2Xn
21 Sy
P Se,

L.:Z= D)

Zno Se, 2%n

where n= 1L, | denotes the length of L., Pro-
file point (z;,s, ) matches with (y;,s, ), and i a
serial number that varies from 1 to n.

w3 —

LR — [AN T Gl =58 ]

[hiae — [AA Gl =3O I Tl — LAY Ty Gl — 58D ]

€))
In order to obtain the cluster centers for the
altitude profile in an effective manner, the dy-
namic weight is determined based on a regression
analysis algorithm to ensure that the generated
center is the closest to each intra-cluster profile.
The object S is calculated as
§ =N bt (L L) + s (L L)

(9
where N represents the number of superimposed
profiles. The function mentioned above is subject
to the following constraints

Z=w X+ @Y o tw =1 (10

To minimize the value of object S, w, and w,

can be determined by the partial derivative of
function S, i.e. s S (w;)=S"(w,)=0. Finally, &
clusters and the fitted nominal altitude profiles
are obtained by applying the superimposition

strategy repeatedly.

2 Nominal Speed Profile Generation
2.1 Flight speed profiles and their characteristics

A flight speed profile is a two-dimensional
image that describes the relationship between
speed and altitude during the flight process. Due
to changes in the air density and sound velocity
with increases in altitude, the calibrated airspeed
(CAS), true airspeed (TAS) and Mach number

will also change, as shown in Fig. 3.

Upper reaches of
the troposphere

FL

CAS

TAS

Fig.3 Airspeed transition altitude

In practice, the airspeed transition altitude
written as H¢ is usually set for convenient flight
control. In general, the aircraft operates with
constant CAS below the airspeed transition alti-
tude. However, considering the effects of air
compressibility, the aircraft flies with a constant
Mach number above the airspeed transition alti-
tude.

Therefore, according to the airspeed transi-
tion altitude, the aircraft flight speed profile is di-
vided into two stages. The phase below the air-
speed transition altitude is shown in Fig. 4(a). In
curve @ of the climbing phase, a represents the
take-off and acceleration stage, & the climbing
stage with constant CAS, ¢ the acceleration stage
at constant altitude, and d the climbing stage
with constant CAS. Similarly, as shown in curve
@), the changing trend in the descending stage is
equivalent to the reverse of the climbing stage
process. However, considering the relationship
between the true airspeed and altitude above the
airspeed transition altitude, as shown in Fig. 4
(b), curve @ is a two-dimensional image descri-
bing the relationship between TAS and altitude
(transition altitude to cruising altitude), whereas
curve @ describes the relationship between TAS
and altitude (cruising altitude to transition alti-
tude).

In Fig. 4, He » Vg represent the cruising al-
titude and the cruising speed of aircraft, respec-
tively; V¢ is the speed at transition altitude H.

Similar to the altitude profile, let Syom =
{sXom > skom s ***» s¥om } be the set of the nominal
speed profile, where siom (viom s ihom) € Sxom de-
notes an arbitrary speed profile point, viom € R

represents a one-dimensional speed, and hyou € R
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CAS

d ! ﬁ
‘O

H c H H c H CR H

(a) Typical flight CAS profile
below the airspeed
transition altitude

(b) Typical flight TAS profile
above the airspeed
transition altitude

Fig. 4 A typical {light speed profile

denotes a one-dimensional altitude.

2.2 Airway meteorological interpolation based on
IDW

In order to obtain more accurate flight speed
profiles, it is necessary to eliminate the influence
of meteorological factors on the ground speed.
Radar trajectory data do not include airway mete-
orological data, so gridded binary (GRIB) fore-
cast data gleaned by World Area Forecast Sys-
tem, which are promoted worldwidely by the In-
ternational Civil Aviation Organization and World
Meteorological Organization, are introduced to
supply service for aviation. GRIB data with a res-
olution of 0.5°X0.5° are updated every 6 h,
thereby providing meteorological information ac-
cording to the pressure distribution at 37 levels,
with factors such as the air pressure, wind speed,

L718] - Therefore, we proposed a

air temperature
data fusion method based on GRIB data and radar
data to obtain airway meteorological data via the
inverse distance weighted (IDW) interpolation al-
gorithm,

The IDW algorithm is an exact local spatial
interpolation method, which estimates values to
forecast the summation of linear points using ob-
servation values. Then, we can use the inverse
of the distance between points with observation
values to weight the forecast values!®?, Let
Lo = {Ixom » [ow » = » [Kow | be the nominal alti-
tude profile, then the location (latitude, longi-
tude, and altitude) and weather (east-west wind,
north-south wind, and temperature) for an arbi-

trary sample [iow are denoted by zhom (@hou s

Avom s Avom) and mioum Cttiws s Vws s Thom ) s Tespective-

ly. The IDW interpolation formula is
miom (Uys s Vws s Lxom ) =

n k k k k n
7ngrib (ugrib ’ 'Ugrih ’tgrih )/ 1 (
1D
,,2 (D)* 2 (D)H?

k=1

where mion represents a forecast value, mba,
Cubi, » Vit » Loy ) the kth observation value, n the
number of observation values, A the exponent
sign, which is the main factor that affects the es-
timation of IDW, and D, the great circle distance
from the £th observation value to the forecast val-
ue, which is calculated as

Dy = (R+hiom) arccos| singhon singt, 1

COSENOM COS@lri, cOS (A, —ANom) | a2
where R represents the radius of the earth, and
(@it s A ) the longitude and latitude of the mete-
orological observation value.

The airway meteorological interpolation al-
gorithm is described as following steps.

Step 1  Determine the GRIB altitude level
where the altitude of the forecast value hAom is lo-
cated. Assume that hiom 1s between the altitude
levels of H%;, and H%', as shown in Fig. 5(a).

Step 2 At the altitude H%,, or H%,' , the ob-
servation values can be determined by the center
(ghom sAvom) and the radius  (as shown in Fig. 5
(b)), which can be used to obtain the forecast
values (QDI:\I()M a/\'f\f()M ) HZrih) and (QDI:\I()M a/\'f\f()M ) HZ:}]
by IDW interpolation.

Step 3 The final forecast value miou Culys »
Viys s thom ) at location ziom is calculated by IDW
interpolation, according to the forecast values at
the locations (gom s ANom s Hian) and Colow s ANow »
Hiwy

HH+1

gib

(Prove> Anom)

i
/ Inom

(a) IDW interpolation along
the altitude

(b) IDW interpolation within
a scan radius

Fig. 5 Airway meteorological interpolation principle

Aiming at the forecast errors in historical
GRIB data, we introduced a method of wind fore-

cast error statistics that can effectively analyze
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1. Firstly, the forecast er-

the existential errors™
ror of the wind is defined as a random field Aw:R
X R*—R* where Aw(z, P) denotes the wind at
time 1€ R and at location point P(x,y,2) € R®.
For the sake of simplicity, wind in the vertical di-
rection is neglected and the case focuses on where
Aw(t, P) € R* is Gaussian with zero mean and co-
variance matrix R (¢, P,¢, P") € R*2,

that the wind-field is isotropic and the east-west

Assume

wind and south-north wind are uncorrelated.
Therefore, according to these hypotheses, the co-
variance matrix R(¢,P,¢',P’) can be simplified as
R(.P./'\P)HO=E[Aw(t.P) « Aw" (/. P")]=
r(t Pt P 0
[ 0 r([,l’,[’,l")}

where E[ « ] represents expected value, and the

(13)

. /7 ’
covariance r(¢,P,t ,P") can be expressed as

r(t, Pyt v P =05(e(Dr, (|t—1"]) »

where ¢ (2) represents the standard deviation of

’
r—ox

4

y—y

)r,uAP(z)—AP(z’)\) a1

the wind error at altitude ¥ and AP (%) the atmos-
pheric pressure which can be calculated via using
the standard atmosphere model. In addition, ac-
cording to the reported data in Ref. [22], func-
tions r,C * ), r,, C+ ), r.C ) all decay exponen-
tially, and can be determined by the parameter

values obtained from Ref. [22].

2.3 Nominal speed profile generation based on
BADA model

The ground speed vector vis can be obtained
easily using a parser of radar data, but the air-
craft's heading under the influence of upper-air
wind, with wind speed uis and viys, needs to be
calculated by GRIB data interpolation. As a re-
sult, the TAS vector vi,s can be calculated by the
flight speed triangle comprising three vectors, as
shown in Fig. 6, the ground speed vector, the
TAS vector, and the wind speed vector,

In Fig. 6, qo; is the wind angle, 1. e. , the an-
gle between the wind direction with the track
line, and g; the drift angle, i. e. , the angle of the
track line off the course line that can be deter-

mined as

Vol. 33
Fig. 6 Flight velocity triangle
sinl:n - (0(, +E,’)] _ Sil’l€,‘ (15)
| Vs | (ulys)? + (viys)”

Then, TAS can be calculated by the result-

ant vector principle as

. Vs — o/ Culys )P+ (oiys)? » cosa;
—C ws — ws i (16)
SE;

Base of aircraft data (BADA) is a collection
of ASCII files which specifies operation perform-
ance parameters, airline procedure parameters
and performance summary tables for more than
300 aircraft types, which can be used for trajecto-
ry simulation and prediction algorithms within
Traffic
BADA modelling

the domain of Air Management

CATM)H™, During the
process, a variety of aircraft performance refer-
ence data is acquired from Aircraft Operation
Manuals, Aircraft Performance Engineering Pro-
grams, and Jane's All the World's Aircraft. The
RDAP validation is used to validate the behavior
of identified models in respect to real data, inclu-
ding radar data, flight plan data, and meteorolo-
gy data, which enables identifying all the parame-
ters that describe the BADA aircraft performance
model .

According to the speed conversion model be-
tween the CAS vias and TAS v, from BADA,
one can obtain the nominal CAS profile

Vpas = { 7‘500 [ ( 1496, ( (14»7%(7}{1“5)2)3.5 B

1))1"3'5—1}}”2 an

where T, =288. 15 K is the standard atmospheric

temperature at mean sea level (MSL), p, =
101 325 Pa the standard atmospheric pressure at
MSL, p,=1. 225 kg/m® the standard atmospheric
density at MSL, t\oy the air temperature at the
aircraft's location, which is acquired from GRIB

data interpolation, and
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(1 —6.87559 X 10 ¢ X hiou) ™ *°%
hivom << 360 89 ft

360 89 —hfW,M> (18)
20 805. 8

}LY\]()M > 36 089 ft
Finally, based on the partition of the air-

10.223 360 9 X exp|

speed transition altitude, the speed profile is ex-
pressed as the relationship between the CAS and
altitude, with the constraint that hion <<H¢. By
contrast, the speed profile is a two-dimensional
relationship between TAS and altitude, with the
constraint that hiom > Hc, where the airspeed
transition altitude can be calculated by
j(?l >6 H =145 442X (1—§%-10%5 1)
16,<<0 He=4 902—20 805. 8 X Ind,

where §=0. 223 360 9 represents critical pressure

(19)

ratio,d; a pressure ratio, can be calculated by

P [140.2Cveas/a)? ] —1
o 7P° B [1+O ZMazj"Ufl (20)

where a, = 340 m/s is the speed of sound under

standard atmospheric pressure, and the parame-
ters veas and Ma can be obtained by analyzing the
aircraft’s speed profile, where the relationship be-
tween the TAS and Mach number can be calculat-

ed as

0.5

Uns (o))

23

i
M i . UTAS .
aNom — -

i
ANOM

)

;
tNxom

3 Simulation and Discussion

3.1 Simulation

In this study, we used 10 radar trajectories
from the same flight, i.e., from Xiamen Airport
to Wuxi Airport, as an example to discuss their
flight profiles. The original relationship between

the historical altitude profiles is shown in Fig. 7.

Flight altitude / km

=

L
L
L
L
Ly
L:‘
)
L,
L,
L

200 400 600 800 1000
Cumulative distance / km

Fig. 7 Original flight altitude profile

First, the distance of the two trajectories was
calculated using the SWED algorithm, as shown
in Table 1. Second, the K initial cluster centers
were determined by integrating the SWED algo-
rithm, density algorithm, and DBI index. Final-
ly, the results of the simulation showed that L,
was an isolated trajectory and when K =3, DBI
was minimized (the changing trend in DBI is
shown in Table 2), so we determined L,, L;,

and L;, as the initial cluster centers.

Table 1 Distance components based on SWED
Distance L, L, L L, Ls L L, Lg
L, 0 16293 15629 15 638 15 766 18 024 16 509 16 721

L, 16293 0 1251113037 14 069 12 939 12 497 13 238
L; 1562912511 0 13037 14 620 15 337 13 620 13 972
Ly 1563813037 13037 0 12540 14 756 11 798 12 904
Ls 15766 14 069 14 620 12 540 0 15155 14 113 13 830

Table 2 Davies-Bouldin index (DBI)

K 2 3 4 5 6
DBI 1. 845 1. 819 1. 857 1. 865 1. 881

We calculated the classification of the alti-
tude profiles using the matching algorithm with
SWED and the regression analysis algorithm, as
shown in Table 3, where the nominal altitude
profile, as shown in Fig. 8, was fitted via cluster
II. In addition, the dynamic weight value w, was
optimized as 0.512, 0. 659, 0. 752, and 0. 798 in
each case, respectively.

Table 3 Classification of the altitude profiles

Cluster [
(Ly,Ls)

Cluster ]
(LysLs,Ls,L;,Lg)

Cluster [l
(Lg,Lyy)

]
=t
=
£

<

5
=

an
g
=
=~

200 400 600 800 1000

Cumulative distance / km

Fig. 8 Fitting of the nominal flight altitude profile
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The meteorological information in the nomi-
nal trajectory of cluster II was calculated using
the IDW interpolation algorithm, where the radi-
us of the earth was 6 371 km and the two expo-
nent signs were 2 and 1, respectively. The inter-

polation results are shown in Fig. 9.

°)

200 400 600 800

Wind direction/(

Number of waypoint

o

200 400 600 800

Number of waypoint

600 800
Number of waypoint

Temperature/ °C Wind speed/(m * s

Fig. 9 Meteorological diagram based on IDW interpo-

lation

In order to discuss the forecast error of GRIB
data, the covariance matrix of wind-field forecast
errors can be determined by using Egs. (13)—
(14), and the results are displayed in Fig. 10,

which can meet requirements of interpolation.

200 400 600 800 1 000

Number of waypoint

Fig. 10 Covariance of wind-field forecast from the

nearest GRIB interpolation point

Finally, facilitating the flight speed triangle
and CAS/TAS conversion model and the relation-
ship between the aircraft’s speed and altitude, we
calculated the airspeed transition altitude as 6 880
m using Eqgs. (19)—(21). Figs. 11-—12 show the

nominal airspeed profiles based on the demarca-

tion point H¢, where the flight speed in the crui-
sing stage was maintained at a Mach number of

0. 82.

Below the airspeed transition altitude

Climbing stage

Descent stage

Calibrated airspeed/(km * h "

3 4 5
Flight altitude / km

Fig. 11 Flight CAS profiles below the airspeed transi-

tion altitude

Above the airspeed transition altitude
1 000

900

800 o .
Climbing-cruise stage

Descent stage
700

True airspeed/(km * h D)

600

500 -
6.8 7.0 U’ 7.4

Flight altitude / km

Fig. 12 Flight TAS profiles above the airspeed transi-

tion altitude

3.2 Result analysis

In order to verify the feasibility of the nomi-
nal flight profile, we estimated three trajectories
using the flight profiles in clusters I, II, and III
for the same flight, where the arrival times at
given waypoints were determined and compared
with the actual arrival times, which we obtained
from SSR or Automatic Dependent Surveillance-
Broadcast, as shown in Fig. 13.

Based on this comparison, we found that the
arrival times obtained from the flight profiles in
cluster Il were the closest to the actual flight
times, where the total flight time was 2. 4 mi-
nutes slower than the actual time. In addition,
we determined the maximum time error over the
cumulative distance of 569. 23 km, where the pre-

dicted time of arrival was 3. 9 minutes later than
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Actual trajectory
Arrival times based on cluster II

Arrival times based on cluster |
Arrival times based on cluster II1

200 400 600 800 1000

Cumulative distance / km

Fig. 13 Comparison of flight times based on 4D trajec-

tory prediction

the actual time. The relative errors in different
flight stages are shown in Table 4.
Table 4 Flight time in different flight stages

Flight time Fl1ght} time .
. ; obtained Relative
Flight obtained from
stage prediction/ from actual error/
: . SSR data/ %
min .
min
Climbing 16. 66 17.91 —6.98
Cruising 35.98 33.83 6. 36
Descending 35.05 33.53 4.53

Finally, given the condition of a low real-
time requirement before take-off, we found that
the flight profile obtained by the improved algo-
rithm proposed in this study could satisfy the re-

quirements for trajectory prediction in the future.

4 Conclusions

In order to mine nominal flight profiles con-
taining the intentions of controllers, we proposed
an algorithm for generating altitude profiles based
on an improved K-means clustering algorithm and
an algorithm for generating speed profiles based
on the BADA model using actual aircraft opera-
tion characteristics. Taking a flight from Xiamen
Airport to Wuxi Airport as an example, we found
that this method could reflect the flight intentions
of controllers and eliminate the randomness in the
trajectory caused by meteorological factors,
thereby illustrate the effectiveness of the final re-
sults.

However, for the generated nominal flight
profile, relative errors occurred for two reasons:

(1) The airway meteorological data obtained from

historical GRIB data using interpolation algorithm
were not very accurate due to long refreshing cy-
cle of the GRIB data. (2) During the actual air-
craft operation, flight conflict resolution using
various strategies, such as adjusting the airspeed
and altitude, was considered in order to guarantee
the flight safety, which influenced the accuracy of
the 4D trajectory estimation compared with that
obtained without considering conflicts.

In future research, we will focus on develo-
ping an airway meteorological revision model to
amend the flight profile by improving the preci-
sion of airway meteorological data, as well as a
strategic conflict-free 4D trajectory planning
method for aircraft to guarantee flight safety,
thereby obtaining more accurate 4D trajectory es-

timation.
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