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Abstract: In order to quantitatively analyze air traffic operation complexity, multidimensional metrics were selected
based on the operational characteristics of traffic flow. The kernel principal component analysis method was utilized
to reduce the dimensionality of metrics, therefore to extract crucial information in the metrics. The hierarchical
clustering method was used to analyze the complexity of different airspace. Fourteen sectors of Guangzhou Area
Control Center were taken as samples. The operation complexity of traffic situation in each sector was calculated
based on real flight radar data. Clustering analysis verified the feasibility and rationality of the method, and provid-
ed a reference for airspace operation and management.

Key words: operation complexity; traffic metrics; kernel primary component analysis; hierarchical clustering

CLC number; U8 Document code: A Article ID:1005-1120(2016)04-0461-08

Vol. 33 No. 4

0 Introduction

Advanced technologies and new operational
concepts have been applied to air transport sys-
tem, leading to a great leap forward in safety, ca-
pacity, and efficiency in the last decades. Howev-
er, the complexity of the system has increased as
well, which has drawn many researchers and op-
eration managers’ attention to the underlying
mechanisms of the system. Nonlinear approa-
ches, including complexity, chaos and fractal an-
alyses, have provided strong tools to delve into
the air traffic control system. For instance, the
complexity of air traffic has become a hot topic o-
ver the past few years and great achievements
have been obtained. The number of aircraft is
taken as the most relevant indicator to complexi-
ty, and has been widely used in Europe, U. S.
and other developed countries. This approach is
to contrast the number of aircraft and the capacity
of airspace to determine the opening and merging

L[1-2]

of sectors Refs. [ 3-5] proposed a dynamic

density model and established a relationship be-
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tween traffic complexity and controller’'s work-
load. An intrinsic complexity model was pro-
posed to measure the complexity of multiple cou-
pled aircraft by means of the aircraft pair conver-
gence/non-convergence situation based on the air-
craft pair’ s relative speed and relative posi-
tionst®*, Refs. [9-10] developed a traffic flow
perturbation analysis model to analyze the degree
of change when the aircraft dealt with perturba-
tion under different traffic situations. They also
designed a complexity map to show the perturba-
tion effect within the controlled range.
Obviously, many factors contribute to air
traffic operation complexity. Researchers have
proposed different complexity models. However,
each model only considers partial influencing fac-
tors. In order to comprehensively reflect the op-
eration complexity of air traffic, multidimensional
factors should be considered in one metrics sys-

temt'?,

Therefore, we proposed an analysis
method based on metrics system. We selected

quantitative metrics to construct the metrics sys-
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tem, and facilitated the kernel principal compo-
nent analysis method to extract information from
traffic flow metrics system. Last, we employed
hierarchical clustering method to cluster sectors
into different categories. The results showed that
the proposed method was capable of representing

air traffic operation complexity.

1 Complexity Metrics System

The air traffic operation complexity mainly
relates to traffic distribution, dynamic operation
effect of traffic

of aircraft, and coupling

0213] - Therefore, the metrics system is con-

flow
structed based on the three aspects.

First of all, aircraft are the basic components
of traffic flow, and their spatial and temporal dis-
tributions are important for the analysis of opera-
tion complexity. Secondly, aircraft exhibit dy-
namic features within 3D space. Climbing, crui-
sing and descending compose a flight process. Fi-
nally, there are coupling relationships between
different aircraft. Any change of an aircraft state
may trigger a complex chain of reactions. The
airspace perturbation analysis and the study of in-
trinsic complexity of traffic have illustrated this
attribute. Thus, an aircraft pair (i. e. a pair of
aircraft) , instead of a single aircraft, is the fun-
damental object for the analysis. In summary,
the operational characteristic metrics of air traffic
should include: (1) Number of aircraft; (2) Av-
erage flight distance of aircraft; (3) Average fly-
ing time of aircraft; (4) Total flying distance of
aircraft; (5) Total flying time of aircraft; (6)
Number of aircraft climbing; (7) Number of air-
craft descending; (8) Number of aircraft in level
flight; (9) Average speed of aircraft; (10) Stand-
ard deviation of speed of aircraft; (11) Average
heading of aircraft; (12) Standard deviation of
heading of aircraft; (13) Minimum horizontal
separation of aircraft pair on the same flight level
within airspace; (14) Minimum vertical separa-
tion of aircraft pair on the same flight level within
airspace; (15) Critical exponent of separation,
which is based on how close the separation be-
tween the two aircraft will be in relation to the

separation minima; (16) Number of aircraft pairs

with relative distance between 0—5 nautical mi-
les; (17) Number of aircraft pairs with relative
distance between 5—10 nautical miles. The de-
tailed definitions and calculation models of the

metrics are given in Ref. [12].

2 Kernel Primary Component Analy-
sis

Primary component analysis (PCA) is a line-
ar dimensionality reduction method, which is
commonly used in multi-metrics comprehensive

L4 However, PCA cannot solve non-

evaluation
linear problems in normal operation situation, be-
cause it may result in scattered contribution rate
of each metric. In recent years, with the develop-
ment of support vector machine, a surge of re-
search on kernel method has emerged. Kernel
principal component analysis (KPCA), involving
kernel method, is the extension of PCA for non-
linear problems, which maps the sample data
through the nonlinear function into the high di-
mensional linear characteristic space, where the
principal component is calculated™. Compared
with PCA, KPCA is not only suitable for han-
dling nonlinearly problems, but also able to retain
more information™. Since the complexity met-
rics are largely nonlinear interacted, we chose
KPCA to extract information of principal compo-
nents.

The detailed steps of KPCA are given as fol-
lows.

(1) M airspace samples at the same time as
well as N metrics are selected. The matrix of the
data of original samples is defined as x =
(xX,m )mx~n+ where x,, represents the data of the
nth metrics of the mth sample.

(2) According to standardized metrics data,
L — T

var(x,)

M
. . — 1
(X)) mx~ 1s obtained, where x, = M 2 X »

m=1

, the standardized matrix X =

X =

M
T2
/var(z,) _\/Mll Z:)l (X —2,) . where var

represents variance.

(3) The appropriate kernel function is de-



No. 4 Xie Hua, et al. Air Traffic Operation Complexity Analysis Based on Metrics System 463

fined to calculate the kernel matrix. In this pa-

per, the radial basis function (RBF) is used as

k(l‘,y):exp<w> (D

a
where a = 1 000 I°7,

(4) The kernel matrix K is updated, and K is
obtained.

(5) The calculated eigenvalues and eigenvec-
tors of K are Aisdss s, and v 5,0y s v, Te-
spectively.

(6) The eigenvalues are sorted in the de-
scending order, and the corresponding eigenvec-
tors are adjusted. Gram-Schmidt orthogonal
method is used to standardize the eigenvectors,
and e, &, »*** s¢, are calculated.

(7) Define contribution rate 8, as the ratio of
the eigenvalue A, to the sum of all eigenvalues.
The cumulative contribution rate is &, +8, 1+ +
S,. o+, ++++06=P (P is the threshold of
accumulated contribution rate which is set based
on experience), t principal components are ex-
tracted as e .5 ***»¢,. Since there are too many
metrics selected in this paper, P is set as
95%L]r1*l5j.

(8) Based on the modified kernel matrix K.
its projection on the standard eigenvector is calcu-

And the pro-

jection is the data of the original sample after the

lated as: T=K * ese= (15" s¢,).

dimensionality reduction and extraction using KP-
CA.
(9) According to the projection, the compos-

L4 of the samples in terms of principal

ite score
component is calculated with the same method as
PCA, so that the comprehensive complexity value
of the airspace samples is obtained when consider-
ing multiple factors of the complexity. The com-
posite score of sample m is calculated as F, =
O fw (&) + 0o f (&) + =+« + 8./, (e)» where

f.(e,) indicates the score of sample m based on

primary component g,, f, (g,) =x, *¢,.

3 Hierarchical Clustering Method

Hierarchical clustering method is one of the
most widely used clustering methods™*, The

basic principle is: Given M samples with each

sample initially as a class, the distances between
samples and between classes are predetermined.
First, the distances between samples are calculat-
ed. The classes with the shortest distance are
combined into a new one. Then the distances be-
tween the new classes and other classes are calcu-
lated, and again the classes with the shortest dis-
tance are combined into a new class. A class is re-
moved each time until M samples are combined
into one class. Finally, the above clustering
process is drawn in a pedigree chart. The number
of classes is determined according to a given prin-
ciple. The distances between classes can be de-
fined by multiple methods. The square sum of
deviations is also known as the Ward method. Its
basic principle stems from the analysis of vari-
ance, which can give optimal clustering and at the
same time ensure the minimum square sum of de-
viations between the same classes of samples as
well as the maximum square sum of deviations
between different classes. The hierarchical cluste-
ring method based on square sum of deviations is
used in this paper.

In order to quantitatively determine the opti-
mal clustering results, the cluster quality dis-
crimination function is developed. The closeness
indicates the degree of similarity between differ-
ent objects in the same cluster. The greater the
degree of similarity, the greater the closeness and
the better the clustering effect. The separability
suggests the degree of separation between the ob-
jects in different clusters. The greater the degree
of separation, the greater the separability and the
better the clustering effect. The closeness and the
separability together determine the cluster quality
function.

Given that there are M objects and each ob-
ject has N attributes, the matrix of the object at-
tribute is X=(x,,, ) yx~n » Where x,,, represents the
data of the nth metric of the mth sample. The
vector of mth sample is X,

T Tl s Tz s s TN 9

m=1,2,++,M, and the distance of any two ob-

N
2 (o —xp )? .

k=1

jects X, and X, is D(X;,X;) =

M objects are clustered into L classes, and
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each sample could only belong to one class, C=
{C,CyyeeesCpyeer,CL b s 1<<L<M. The closeness

of the cluster subset is expressed as

com (C,) =
(> > (DX, X)) 7
X,Q/X}e(‘,.xj/éz‘ - Clet
> DX..X).X €
X, X, 2x, — Cl=1
(2)

where 7 c,| represents the number of non-re-

peated object compositions contained in the clus-

ter subset, the number of elements in the

subset. The closeness of C containing L clusters

is shown as

L

com(C) = Ecom(cz) .

=1

C| (3)
The separability of any two cluster subsets is ex-
pressed as

(> > (DX, X))%) "

Vel yet,
|G, Ce

L=#1 4)
The separability sep (C) of C containing L clus-

sep(C,,C,) =

ters is calculated as

2 sep (C,,C,)
(‘,.(‘ké(‘ I#£k
: L#1
. Ciey 7~
sep(C) = .
DD DX X))
X.eC X.eC
i 1 Jj l L 1
(e, |—1n -« ¢
(5)

The cluster quality function can be obtained from
the closeness and separability of the clusters,
which is expressed as

cqt(C) =sep(C) /com (C) (6)
Thus, the cluster quality can be determined ac-
cording to the cluster quality function. The larger
the function value, the better the clustering
effect. As a result, the optimal number of clus-

ters is determined.

4 Case Study

The proposed method was implemented

based on the data from Guangzhou Area Control

Center. The airspace structure is shown in Fig. 1
(a). Fig. 1(b) shows the radar trajectories of
flights between 9 : 00—10 ¢ 00, Sep 13, 2012,
providing intuitively understanding of the airspace
structure and traffic distribution in Guangzhou re-
gion.

Most sectors are high-altitude sectors, while
the remains are medium and low-altitude sectors.
There are 21 high-altitude sectors above 7 800 m,
including AR01-08, AR11-22 and AR24. Wuhan
Approach Control Area is under AR15 and AR16,
Zhanjiang Approach Control Area is under ARO7
and ARI18, Guangzhou Approach Control Area

Fig. 1

Airspace structure and radar trajectories in

Guangzhou Area
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and Zhuhai Approach Control Area are under
ARO05 and ARO02, and Changsha Approach Con-
trol Area is under ARI13. Due to the lack of
height information in the flight radar data ob-
tained from the operation backup system, when
there is an approach control sector under a high-
altitude sector, the flight radar data that belongs
to the approach control sector will be misclassi-
fied into the high-altitude sector, leading to ex-
cessive data of the high-altitude sector. This will
influence the analysis result. Therefore, the a-
bove influenced high-altitude sectors were exclu-
ded from this study. The remaining 14 sectors
were taken as airspace samples, which were re-
presented by Sectors 1—14 in order to simplify
the expression. The 17 metrics were represented

by MT1—17 in the order listed above.

Operation complexity metrics were calculated

95%, a total of seven principal components were
extracted. The cumulative contribution rate is up
t0 95.97%, as shown in Table 2.

Table 1 Results of operation complexity metrics
MT2/ MT3/ MT4/ MT5/ MT17/
Sector MT1
km  min km  min pair
1 § 174.5 7.2 1395.857.4 .- 1
2 8§ 176.0 7.1 1407.7 56.9 3
3 4 173. 0 5.8 691.7 23 0
4 2 123.2 5.3 246.3 10.5 0
5 4 91.2 4. 7 364.8 18.8 1
11 3 60.7 3.9 182.0 11.8 0
12 6 130.8 9.5 784.6 57.0 0
13 7 118.7 28.5 831.0 199.5 1
14 5 71.2 3.0 356.2 14. 8 1

Based on the principal components extracted

by KPCA., the composite scores of sector samples

at 18 57 ¢ 29 of one day. Part results are shown were calculated, as shown in Table 3. Then the
in Table 1. When the cumulative contribution clustering analysis was carried out. Fig. 2 is the
rate of principal components of metrics reached obtained cluster pedigree chart.
Table 2 KPCA results of operation complexity metrics
Principal component 1 2 3 4 5 6 7
Eigenvalue 0.007 63 0.004 53 0.004 12 0.001 90 0.001 54 0.000 79 0.000 67
0.326 76 0. 147 42 0.090 74 —0.108 54 0.020 74 0.213 67 —0.178 62
—0.169 71 0.047 23 —0.510 03 0.019 95 0.090 79 —0.026 85 0. 345 05
0.059 15 —0.37059 —0.126 96 0.149 92 0.081 54 —0.072 96 0.283 28
0.188 00 0.024 11 —0.32108 —0.043 07 —0.198 94 0.121 66 —0. 246 80
0.176 67 —0.307 93 —0.006 23 0.154 06 0.019 97 —0.036 04 0.049 67
0.126 32 0.3138 45 0.000 20 0.042 90 —0.638 16 0.274 94 0.232 14
—0.351 75 0.079 73 0.449 81 0.471 99 0.037 66 0.320 10 —0.148 32
Eigenvector 0.267 31 0.027 24 0.016 53 —0. 305 86 0.466 75 0.094 44 —0.315 95
—0. 205 46 0.502 21 —0.230 82 0. 325 55 0.377 30  —0.010 19 —0.130 66
0.12574 —0.262 95 0.186 46 0.372 90 0.056 44 —0.211 02 0.206 43
—0.299 87 —0.297 60 0.295 27 —0.416 46 0.120 80 0.350 11 0.149 14
0.251 36 0.049 40 0.148 89 0.053 54 0.025 25 —0.484 95 —0.052 33
—0.38059 —0.14999 —0.33370 —0.19536 —0.015 67 0.052 24 —0.020 46
—0.422 69 0.092 58 0.173 38 —0.257 34 —0.28076 —0.573 28 —0.253 20
0.13299 —0.25452 —0.084 92 0.042 51 —0.262 07 0.069 55 —0.394 00
0.175 75 0.359 84 0.252 48 —0. 306 66 0.098 35 —0.081 40 0.474 63
Contribution rate 0.345 7 0.205 2 0.186 6 0.086 0 0.069 7 0.036 0 0.030 5
Comgsii‘gzt:je/% 34.57 55. 09 73.75 82. 35 89. 32 92. 92 95. 97
TabLle 3 Composite scores of sector samples
Sector sample 1 2 3 4 5 6 7
Composite score 0.086 54 0.141 55 —0.041 14 —0.18059 —0.000 44 —0.152 66 0.097 98
Sector sample 8 9 10 11 12 13 14
Composite score 0.096 50 0.004 50 —0.08839 —0.077 41 0.031 93 0.076 71 0.004 92
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Fig.2 Cluster graph

According to the cluster quality function and
the operation complexity, sector samples were
clustered into three categories. ARO03, AROI,
AR22, AR12 and AR14 were clustered into the
first category. AR21, AR24, AR17, AROS8,
ARO04, AR19 and AR20 were clustered into the
second category, and AR06 and AR11 were clus-
tered into the third category. These three catego-
ries have different characteristics: (1) The com-
mon characteristics of the first category represen-
ted by ARO3 showed that there were a larger
number of aircraft. Although there were some
aircraft in the climbing state, most flights were in
level flight. The speed distribution had a large
fluctuation range (large standard deviation),
while the minimum horizontal separation was be-
and the minimum

tween 6—10 nautical miles,

vertical separation distribution was between
300—600 meters. Due to the wide distribution of
the traffic flow, the flights exhibited obvious dy-
namic feature. There was a strong coupling rela-
tionship between flights, and the intrinsic attrib-
ute was prominent. Therefore the operational sit-
uations of these sectors were most complex.
(2) The main characteristics of the second cate-
gory represented by AR21 were that the number
of aircraft was at the intermediate level, with
flights basically in level flight. The average speed

was between 600—800 km/h, and the fluctuation

range was small. The distribution ranges of mini-
mum horizontal and vertical separations were en-
larged, with only a few sectors had a pair of air-
craft within 5—10 nautical miles. Compared with
the first category, the traffic density of the sec-
ond one was smaller. The aircraft’s dynamic state
began to stabilize, and the speed distribution was
consistent. The coupling effects between aircraft
became weak, so the overall operation complexity
dropped off. (3) The operation situations in the
third category of AR06 and AR11 were relatively
simple. Due to the small number of aircraft, the
distributions of most metrics decreased, and the
minimum horizontal and vertical separations were
large. The dynamic characteristics were not obvi-
ous, and the interaction between aircraft was not
significant. So the operational characteristic was
the simplest one.

In summary, the distribution of traffic flow,
dynamic states and the coupling relations are im-
portant factors that contribute to operation com-
plexity of air traffic situation. Although the num-
ber of aircraft is not equivalent to the complexity
(for example, ARO03 and AROl1 had the same
number of aircraft, but the scores of the com-
plexity were not equal), it plays an important
role in analyzing the complexity. Based on the
method of study operation complexity, managers

can assess the operation complexity of airspace u-
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nits in real time and control flights to reduce the
complexity. They can also identify operational
problems through the analysis of historical radar

data.

5 Conclusions

We chose some related quantitative metrics
to describe the multi-dimensional operational
characteristics, therefore to study the operation
complexity of air traffic. Then we utilized KPCA
to reduce dimensionality and refine the high-di-
mensional metrics system, which helped to ex-
tract composite score to analyze the complexity of
sector sample. The hierarchical clustering method
was used to analyze the complexity level of multi-
ple sectors, indicating the feasibility of the pro-
posed method. Finally, we took Guangzhou Area
Control Center as an example to verify effective-
ness of the method. The results also provided a
reference for the airspace management.

In the future, we will focus on integrating
more operational factors into the metrics system,
and try to involve more time slots in dynamic
clustering analysis to explore fluctuations of oper-

ation complexity of multiple sectors.
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