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Abstract; Airlines adjust their flight schedules to satisfy more stringent airport capacity constraints caused by in-
clement weather or other unexpected disruptions. The problem will be more important and complicated if uncertain
disruptions occur in hub airports. A two-stage stochastic programming model was established to deal with the real-
time flight schedule recovery and passenger re-accommodation problem. The first-stage model represents the flight
re-timing and re-fleeting decision in current time period when capacity information is deterministic, while the sec-
ond-stage recourse model evaluates the passenger delay given the first-stage solutions when one future scenario is
realized. Aiming at the large size of the problem and requirement for quick response, an algorithmic framework
combining the sample average approximation and heuristic method was proposed. The computational results indi-
cated of that the proposed method could obtain solutions with around 5% optimal gaps, and the computing time
was linearly positive to the sample size.
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0 Introduction

In airline daily operations, the flight irregu-
larity is intrinsically inevitable due to dynamic en-
vironment. The uncertainty of weather and other
events reduce the airport capacity, which leads to
airport congestion and incurs flight delay and can-
cellation. Recovery policies could be implemented
to mitigate the disruption. In 2013, the average
on-time ratio was 78. 4% in the U. S. according
to the 16 main carriers’ data from Bureau of
transportation statistics ( BTS). Each irregular
flight costs $ 16,600 on average, including ex-
penses on fuel, maintenance, crew, passenger
time and welfare loss. The situation is nothing
but worse in China. According to the official sta-
tistic, the number of irregular flights was up to a-
round 769 000, and the average punctuality ratio
was only 72. 34% in 2013, which meant about 2
100 irregular flights waited for being dealt with
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every day. With the speedy development of air
transportation in China, the disequilibrium be-
tween increasing flight demand and the relative
stable air transportation capacity is prominent.
The airport slot, which is the time allocated for
an aircraft to land or take off, has become a
scarce resource in recent years’.

There are two flight network of airlines: City
pair and hub-and-spoke. In city pair network, the
disruptions on airports are less troublesome be-
cause most passengers travel in itineraries with-
out transferring flights. However, in hub-and-
spoke flight network, since large-scale of flights
are operated and passengers transfer flights in the
hub, disruptions may spread to following flights.
The slot resources in hub airports, such as Bei-
jing, Shanghai, have already run out for regular
operations. When inclement weather or other un-
expected events reduce the airport capacity, the
aviation authority (such as FAA, CAAC etc.)
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provides a set of slots for each airline at the dis-
rupted station, and a free flight program allows
an airline to assign legs to the set of slots™’,
There are four sub-problems for flight recov-
ery, dealing with the flight timetable, aircraft,
crews and passengers. The schedule recovery
problem (SRP) is to re-time the flight schedule
and determine the cancellation, so it is the basic
work for the other three sub-problems. The air-
craft recovery problem (ARP) re-assigns aircraft
to re-scheduled routings and keeps fleet balance
for flights beyond recovery period. The crew re-
covery problem (CRP) generates new duties for
crews. The passenger recovery problem (PRP)
re-accommodates disrupted passengers to new i-
tineraries to deliver them to their destinations.
Since aircraft are the most important re-
sources for airlines, ARP attracts most academic
focus. Jarrah and Yu researched the network flow
model with the aircraflt shortage™. Yan and
Yang studied the flight schedule recovery problem
with airport temporary closure*!. Argiiello, Bard
and Yu discussed the flight schedule recovery
problem with temporary shortage of aircraft, and
applied GRASP algorithmic framework to rear-
range aircraft routings™™. In reference to PRP,
Bratu and Barnhart studied the flight delay, can-
cellation decision and the passenger re-assign-
ment, considering the passenger arrival delay
cost'™. Zhang and Hansan researched schedule
and passenger recovery for a one-stage hub-and-
spoke network., considering both arrival and de-

7] Bisaillon et al.

parture capacity constraints
studied passenger reassignment problem combi-
ning fleet assignment and aircraft routings, they
designed a large neighborhood search heuristic
method to identify improved solution while retai-
ning feasibility’®!. The above references concen-
trated on individual recovery, regarding aircraft,
crews, and passengers separately. Recently,
more research emphasizes on integrated recovery.
Abdelghany studied integrated decision-making
tools for flight recovery problem, and put for-
ward the integrated recovery solution with all

flight resources involved™. Petersen et al. are

known as the first team who the fully integrated
recovery formulation and approach with computa-
tional results presented™.

The above assume that disruptions are
known before decision-making. However, the
significant inherent uncertainties make the recov-
ery problems more complicated. Recovery plans
from deterministic model result in lack of robust-
ness and more operational costs. In recent years,
stochastic programming shows its advantages in
many industries such as transportation, manufac-
turing, finance, and logistics etc. Although few
works have been published on airline stochastic
recovery problem, there are some research on
other aviation fields. Considering the stochastic
scheduling of airlines, Rosenberger et al. worked
on the simulation software that controlled the un-
certain delay time in airline operations'"’. Wu ex-
plored the inherent delays of airline schedules re-
sulting from limited buffer times and stochastic
disruption in airline operations, and the results
indicated that airline schedules must consider the
stochasticity in daily operationst'?. Yen and
Birge established a two-stage stochastic integer
model on airline crew scheduling problem under

uncertain disruptions. They designed a flight-pair
[13]

d[14]

branching algorithm Silverwoo and Kara-

[55) reviewed the application of stochastic

caogulu
programming techniques on airline scheduling.
They indicated that stochastic programming tech-
niques were able to improve the delay recovery
performance of the schedule. Sélveling studied
the stochastic programming methods for schedu-
ling of airport runway operations. He established
a two-stage stochastic integer model, and used
sample average approximation (SAA) method
and Lagrangian decomposition to solve the mod-
el. He also proposed an improved stochastic

6] Referring to the

branch and bound algorithm
stochastic methods in airlines operational field,
Mou and Zhao built an uncertain programming
model with chance constraint, and solved it based
on classic Hungarian algorithm to deal with the
recovery problem under stochastic flight timef'™.

Arias et al. proposed a combined methodology u-
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sing simulation and optimization techniques to
cope with the stochastic aircraft recovery prob-
lem®. Guimarans et al. solved the stochastic
aircraft recovery problem using large neighbor-
hood search metaheuristic approach combined
with simulation at different stages. The results
shows stochastic approach performs better than a
deterministic approach™*.

Among those stochastic recovery references,
uncertainties were reflected only in the flight
times. However, it is stochastic external factors
where irregular flights come from in most cases.
We studied the flight recovery problem combining
re-timing, re-fleeting and passenger re-accommo-
dation when the hub undergoes stochastic decrea-

sing hub capacity.
1 Problem Statement

The essence target of recovery policies is to
re-accommodate passengers as soon as possible
when irregularity happens. Every recovery plan
should maintain flow balance for every plane,
crew, and passenger flow. The basic strategies to
recover flights are delay and cancellation. Every
flight has its scheduled time of departure(STD)
and scheduled time of arrival(STA) , denoting the
original scheduled times of departure and arrival,
respectively. After delay and cancellation ap-
plied, every active (not cancelled) flight will have
its estimated time of departure (ETD) and esti-
mated time of arrival(ETA), which are estimated
times of departure and arrival, respectively. To
some minor disruptions, delay might be the intui-
tive recovery policy, and it may be effective if the
delay time is acceptable and will not break the
flow balance in the system. However, in many
cases, "only delay” may not be a good strategy be-
cause the delay may propagate in the following
flights, and will cause passenger or crew miscon-
nection. Cancellation is a quick response to recov-
er the flight schedule, but it is costly because a
bunch of passengers will be re-accommodated or
spilled, and it may also break the aircraft or crew
connections. Cancelling a flight leg usually re-

quires rerouting the aircraft, crew and passenger

flows. Since crews and passengers can fly on oth-
er legs or even use other transportation mode,
there are many ways to maintain their flow bal-
ance. Unfortunately, rerouting the plane is more
difficult, and the airline may cancel additional

2] So when cancellation

legs on the plane’s route
policy is applied, the controllers usually cancel a
flight cycle, which is a sequence of legs that be-
gins and ends at the same airport, to maintain
aircraft flow balance at airports.

For aircraft recovery, there are some specific
strategies. Aircraft swap or type substitution may
be applied to find the possible swap opportunities
in the same aircraft type or between other types.
Reserved aircraft can be used to solve the disrup-
tions caused by shortage of aircraft, but they are
not always stand by for economic concern. Ferry
is also a backup but least used strategy, which
flies to specific station without passengers in or-
der to perform the following flights.

As mentioned before, when inclement weather
or other unexpected events emerge, airlines will get
the airport capacity information from air traffic con-
trol (ATC) authority in terms of available slots in a
unit time period (or time stage if there is no ambigui-
ty). Fig. 1 illustrates the capacity information and
three time periods involved in the problem. Usually
the slot information can just be known for the current
time period, such as time period 1 in the figure. For
the later time periods, such as time period 2—4, the
discrete probability distribution can be introduced to
the capacity scenarios.

Disruption time period T, consists of time
stages when capacity is reduced.

Recovery time period T, is the time period
when flight schedule and fleet assignment are re-
built. Once the fleet is determined, it is trivial to
assign specific airplane. The recovery process be-
gins at the very beginning of T, , and all flights
that scheduled to departure in T, are adjustable.
Beyond recovery time period, the flight schedule
should go back to normal status. It means, all
flights that scheduled to departure beyond T,
should not be delayed nor cancelled, and will be

operated by the original aircraft type. It is obvi-
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ously that the longer T, is, the more adjustable
flights are involved, the more possible recovery
chances are generated, and the higher the compu-
tational complexity will be. The shorter recovery
time period forces more usage of cancellation,
which guarantees the flight can be recovered to
normal quite soon, while it may incur more cost.

Re-accommodation time period T, is the time
period when passengers can be re-accommodated.
It can cover the whole day along, and even can be
extended to a longer time if serious disruption
happens. Theoretically, all the disrupted passen-
gers can be re-accommodated in the future if the
T, is long enough, since flights are frequently op-

erated in flight schedule.

T Capacity information

A

-

A

Disruption time period T,

A

Recovery time periond T,

Re-accommodation time period 7,

\.

Fig. 1  Illustration on time periods involved and capacity

information

During T, , the airport capacity is uncertain.
In Fig. 1, for example, there are three capacity
scenarios, each of which has corresponding prob-
ability. Solutions should be found for the current
time period before one of the scenarios is realized
in the future.

Since flight cycles are considered as units in
the recovery process, different types of flight cy-
cles are defined in order to distinguish the differ-
ent roles in recovery process. Fig. 2 shows the
four types of flight cycles, although all flight cy-

cles simply consist of only two flights in the fig-

ure, they can consist more flights in our model. In
H—B
means the flight F11 departs from airport H and

Fig. 2, A,B,C,D, H represent airports.

arrives at airport B. Notice that the flight cycle
confines to the simple cycle without sub-cycle.
Cycles of type (1), (2) and (3) are those with
STD in the recovery time period, so they are ad-
The ETA of

type (1) is in the recovery time period, so it can

justable in the recovery process.

be delayed, cancelled or re-fleeted. The last flight
such as F22 in type (2) has STD in the recovery
time period, so it is suitable to all the recovery
Notice that although F22 has
STA after the recovery period, it might be de-

policies as well.

layed to some degree, which will be constrained
by delay limitation or aircraft balance requirement
in the model. Type (3) has flights with STD af-
ter recovery period, so in order to guarantee the
flights unchanged, the cycles cannot be cancelled,
and the fleet type cannot be changed. Since type
(3) has flight like F31 which has STD before re-
covery period, it can be delayed to some degree as
long as it does not influence the regular operation
of F32. Cycles of type (4) are those with STD af-
ter recovery time period, so they are supposed to
fly regularly, and cannot be cancelled, delayed or

re-fleeted.

Recovery time period |
I=Flight cycle type (1) |« Flight cycle type (3)—]
1
HTL || BFBH F31 | | F32
H>A A+>H
Turn-around time Turn-around time
<Flight cycle type (2)—= l«Flight cycle type (3)»]
F21 | [ P22 F41 | | F42
H>C C~H | H>D D-+H
Re-accommodation time period

Fig. 2 Four types of flight cycles

2  Stochastic Model for Real-Time
Integrated Recovery Problem
A two-stage stochastic model was established

to deal with the flight schedule problem under un-

certain reduced capacity in the hub. The classic
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two-stage stochastic model was proposed by Da-
[21]

ntzigt?”

and Beale The first-stage model was
designed to find solutions before the uncertain pa-
rameters were identified, and the second-stage
model presented possible recourse solutions after
all the uncertainties were identified. In modeling
the recovery problem, assume that the flight net-
work has N,, airports. one of which is the hub
airport, where all the involved flight cycles begin
and end. The slots resources in the spoke airports
are sufficient. It is reasonable because in hub-and-

spoke network, the aircraft movements in spoke

airports are much lesser than those in the hubs.
2.1 The first-stage model

The first-stage model determines the recov-
ery decisions in the current time stage. Since the
flight timetable and aircraft routing are consid-
ered simultaneously, there are 4 candidate recov-
ery policies: delay, cancel, fly and fleet re-as-
signment,

(1) Set and parameters

FC = {19""_fb‘(i} :
dexed by 7.

FC, . Set of adjustable flight cycles, with

Set of flight cycles, in-

STD in current time stage. FC, C FC .

F . Set of flight legs, indexed by f'.

e : Set of fleet types, indexed bye.

0 : Discrete disruption scenario set, indexed
by w.

a. : Number of available aircraft of type e at
the hub airport currently.

ce . Cancellation cost for flight cycle 7.

¢ : Cost of assigning fleet type e to flight cy-
clez.

(2) Decision variables

For each flighty cycle: € FC, ,

w; : Cancellation variable, equals 1 if 7 is
cancelled, otherwise 0.

u; : Delay variable, equals 1 if 7 is delayed to
the next time stage, otherwise 0.

v; : Fly variable, equals 1 if i flows in current
time stage, otherwise 0.

k¢ ;. Fleet assignment variable, equals 1 if

type e is assigned to i , otherwise 0.

Let x denote the above decision variables in

the first-stage model for expressional simplicity

inZ = . peaneel Z T
minZ Ziel-‘(il (wi o ™+, kie )+

E[Q(x.a)] D)

w, +u, +v,=1,¥Y1 &€ FC, 2)
ZzeF(“ Ui < D1 3)

D ki=wv.Yi€ FC, 4)
2w ki <anVeeq )

In Eq. (1), E[Q(xsw) ] represents the ex-
pectation for given x under uncertain capacity pa-
rameters. The objective function of Eq. (1) is to
minimize the cancellation, re-fleeting costs plus
the expected passenger arrival delay. The first-
stage constraints are defined to choose the sched-
ule recovery and re-fleeting decisions on the flight
cycles of current time stage. Constraints in Eq.
(2) require that one decision must be made for
the flight cycles that in the first-stage, they
should fly, be cancelled or delayed. Constraint in
Eq. (3) represents the departure capacity restric-
tion in current time stage on the hub airport. D,
is a deterministic capacity parameter in the mod-
el. The arrival capacity limitation is not consid-
ered in this model because fly time for a flight is
assumed to be constant, so the arrival time of the
relative flights should be already known at cur-
rent time stage. Constraints in Eq. (4) are the
fleet assignment constraints. For those flown
flight cycles, one fleet must be assigned. Con-
straints in Eq. (5) are aircraft resource con-
straints, which indicate that aircraft of each fleet
type are limited. The total number of aircraft that
assigned to those flown flight cycles in current
time stage cannot excess the available amount of

aircraft for each fleet type.
2.2 The second-stage resource model

The second-stage resource model reflects the
expected passenger delay considering the future
flight schedule recovery. In Eq. (1), E[Q(x,w) ]
represents the expectation for given x under un-
certain capacity parameters. The uncertainty can

be modeled as discrete disruption scenario set (2 ,
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and each w € ( has its corresponding probability
p. . Thus E[Q(zxsw) ] can be computed by opti-
mization problem Q(x,w) .

(1) Set and parameters

P . Set of passenger itineraries, indexed by
psr.

Ay . Equals 1 if flight leg fis in flight cycle i,
otherwise 0.

SEAT, : Seat number of fleet typee.

87 : Equals 1 if flight leg f is in itinerary r ,
otherwise 0.

n, : Number of passengers on itinerary p .

d’), : Total cost of delay incurred when itiner-
ary p passengers is re-accommodated on itinerary
r.

R(p,x,w) : Set of candidate recovery itiner-
aries for each itinerary p based on first-stage deci-
sion x under scenario w , which includes the p it-
self, the other proper itineraries and a virtual i-
tinerary that models passengers spilled.

(2)Decision variables

q,(xsw) : Number of passengers who are o-
riginally in itinerary p but ultimately served on i-
tinerary r based on first-stage decision x under
scenario w .

ki(x,w) : fleet assignment variable based on
first-stage decision x under scenario w , equals 1 if
type e is assigned to i , otherwise 0.

Let y(x,w) denote the above decision varia-
bles in the second-stage model for expressional
simplicity.

The recourse model reflects the passenger ar-
rival delay during the entire T, . Notice that not
only the fight cycles in the first-stage are consid-
ered, but also those re-constructed (combining
re-timing and re-fleeting) flight cycles in the fu-
ture. The objective function of the recourse mod-

el is defined

Q(xsw) :=minQ(x,w) = minzl)@’ 2

r€R(pziw)
d}, X ¢, (z,w) 6

2 FER o) q; (xsw) = n,
V/iEF,Ype Py, =1 7

Z pEP Z FERGpazra) O X gy (xrw) < Z e€e Z i€ FC

SEAT Ak (xsw) VfcF (€)

Constraints in Eqgs. (7), (8) are the passenger re-
accommodation constraints. They are referred to
Bratu and Barnhart's model in Ref. [6]. Eq. (7)
ensures that all passengers will arrive at their des-
tinations finally. Eq. (8) requires that the num-
ber of passengers that transferred to a flight leg
cannot excess its seat capacity, and if the flight
leg is cancelled, no passenger will be transferred
to it. Notice that for Vi € FC, , k¢ (xsw) =F¢ be-
cause all the parameters are known in the first-
stage model.

There is an implicited hard work on the re-
course model, which is the generation of R(p,x,
w) . The generation work is based on the eligible
re-constructed flights. Compared with the re-
scheduling solutions in the first-stage model, the
flight re-construction for the second-stage is much
more complicated under one scenario. All the eli-
gible flights must meet the following require-
ments.

(1) The minimum turn-around time for the
consecutive flights in one aircraft routing.

(2) No flight can fly before its STD.

(3) The arrival of flight cycles in each future
time stage cannot exceed the corresponding arri-
val capacity in the hub.

(4) For the flight to fly, an aircraft should
be assigned.

(5) At the end of T, , there are enough air-
craft available of each fleet type for the following
regular flight schedule.

Theoretically, for each feasible first-stage
solution and each scenario, a second-stage re-
source solutional ways exists since cancellation
strategy can always be applied to recover the
flights, so the stochastic model has relatively

complete resource.

3  Algorithm

The deterministic flight recovery model is al-
ready NP-hard, so obviously when it is extended
to stochastic problem, more significant computa-
tional effort will be required. The proposed two-
stage stochastic model has some special features

as follow.
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(1) The first-stage solution number is finite
and can be enumerated. Regardless of the propa-
gation effect on the recourse model, for given
FC,, airport capacity and the available aircraft,
the combination of decision variables w; s u; s v;
and £¢ in the first-stage are not hard to obtain.

(2) The objective function value of the re-
course model Q(x,w) cannot be easily calculated.
It has two layers: One is the schedule re-con-
struction work on the flight schedule; the other is
the passenger re-accommodation optimization
based on the re-constructed flight schedule.

(3) The schedule re-construction solutions
for the second-stage model are too large to enu-
merate even for one given disruption scenario. In
our problem, the re-construction solutions in each
stage depend on the solutions of the previous sta-
ges. As the stage goes further, the solutions
number will increase exponentially. Besides, gen-
erating a feasible re-constructed flight schedule is
time-consuming since the complicated constraints
mentioned in the previous section. Thus, the re-
source model is not easy to solve.

(4) The passenger itinerary recovery work in
the resource model can be solved quickly for given
x s w, and the re-constructed flight plan. (The
detail algorithm to solve the model will be elabo-
rated later)

For stochastic programs with large solution
space of recourse model, a number of sampling
based approaches have been proposed. Random
sampling methods are used to obtain the statisti-
cal estimates of the expected value function.
They can be classified into two groups: interior
sampling and exterior sampling methods. Sample
average approximation (SAA) method is one of
the exterior methods where the sampling and op-
timization are decoupled. The basic idea is quite
simple: random samples of scenario are generated
and the expected value function is approximated
by the corresponding sample average function"??.
More information on the SAA method can be
found in Ref. [227]. Due to the requirement of
short response time for recovery problem, an al-

gorithmic framework is proposed to combine SAA

method and heuristic algorithm, which is referred
to the Solveling's approach in Ref. [16], to ob-
tain good solutions in tractable computing time.
The basic idea of the algorithm is listed as fol-
lows, and the details of the key techniques will be
described in the following subsections.

(1) Enumerate the feasible decisions on
flight cycles in the first-stage model.

(2) Index each first-stage solution as a node
within the resulting decision tree.

(3) For each node, evaluate a sample set of
candidate paths originating at the node viarandom
sampling.

(4) Solve the corresponding SAA problem to
obtain the upper bound for each node.

(5) Heuristically compute the lower bound
for each node.

(6) Prune the nodes that are not promising.
3.1 Upper bound estimation

For the upper bound estimate, clearly the
objective value of any feasible solution will be the
upper bound for the optimal value Z* . So sup-
pose w; and k¢ denote one feasible solution in the
first-stage model, 1. e. , x = {w,,k¢} , and N the
sample size, then the upper bound estimate can

be defined as
UZ ) =25 e (et 30 kie e+

N
QG /N 9

n=1

In the standard SAA method, it is natural that
samples are generated from disruption scenario
set 2 according to probability distribution p. Q is
finite but the re-constructed schedule solutions
for a given w are too large to traverse, so Q(£,w"

is hard to determine. Therefore, the re-construc-
ted schedule solutions can be considered as a re-
construction set for given x and w , then sampling
from it can obtain optimal or suboptimal Q(x,w)
as Clarke did in large-scale deterministic recovery

[23]

problem Since any feasible solution y(z, o"

in second-stage model will compute the upper
bound U(Q(x,w")) for Q(z, ") » Eq. (10) can
be defined to obtain the upper bound for Z* in

short time
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N Zzem‘l (w; ¢ 4 PEE/Q,C,) +

N
DIUQx ) /N (10)

n=1

Eq. (11) is defined to update UQ(z "))
where j represents the index of sampling from re-
construction set. The equation means when a bet-
ter solution is obtained in the sampling process,
the upper bound will be updated accordingly. As
the sample size increases, the upper bound will
decreases in piecewise way.
U, (Q(x ")) =min{U, , (Q(xs0") ) »Q;(x.w")}
an

3.2 Passenger itinerary recovery algorithm

For given ( ., ") and one re-construction
sample, the candidate recovery itineraries R(p,x,
w) will be trivial to generate. The resource model
(Egs. (6)—(8)) will be optimized to obtain the
passenger delay cost. For such problem, a heu-
ristic method is used for the following three rea-
sons: Firstly, the optimization problem is hard to
solve and time-consuming to get the exact optimal
result. Secondly, there is trade-off between com-
puting time and solution quality. By saving time,
more samples can be generated and it will im-
prove the estimator quality in turn. Thirdly, the
heuristic manner is more intuitive and acceptable
for passengers in real world operations.

In each stage, the passenger itineraries are
ordered by their " value”, which was defined as
how much they paid on their itineraries. High-
value passengers will have higher priority in re-
accommodation process. Since passengers are
clustered in different itineraries in the paper, the
disrupted passengers in highest priority itinerary
will be re-accommodated first to the least delayed
available itinerary. The algorithm can always ob-
tain satisfactory solution because spilled passen-
gers can transferred to the virtual itineraries.
This greedy process will perform continuously
until all passengers confirmed their new itinerar-
ies, and the delay cost is trivial to compute then.
The detail of the passenger itineraries recovery al-

gorithm is listed as follow.

Let Q(xsw") =0
Sort the set F in according with the ascending STD
for fin the sorted set of F
search to find the involved itineraries and generate a
value-descending itinerary set P,
for p € P,
generate R(p,x,w) and sort it according to the
ascending ETA
while the number of passengers who has not been
re-accommodated nb, > 0 do
if R(p.x.w) cannot find available seats ex-
cept for virtual cancellation ones
update nb, = 0
updateQ(z,aw")
else
greedily transfer the passengers of itiner-
ary p to the R(p.x.w)
update Q(T»a") » nb, and the seats infor-
mation
end while
end for
end for

3.3 Lower bound estimation

In our problem, the expected value function
E[Q(x,w) ] is approximated by the sample aver-

N
age function 2Q(1’,a}7’1)/ N’ . Referrin to stand-

n=1

ard SAA method, the stochastic problem
Iy = minzieﬂ, (w; o comeel Zkeskf o i)+

N

> 1Qx.w/ N (12)

n=1

is defined as the SAA problem and can be solved
as a deterministic optimization algorithm. The
SAA method proceeds by solving the SAA prob-
lem as Eq. (12) repeatedly. By generating M inde-
pendent samples, each of them with size N’ , and
solving the associated SAA problems. one can ob-
tain objective values Z'y , Z% »+++, Z . Let

M
L&z H)=>) 2" /M (13)

m=1

where L (Z" ) denotes the average optimal objec-
tive function value for the M* SAA problems.
Since E[L(Z*) ] < Z* PY, L(Z*) provides a
statistical estimate for a lower bound on the opti-
mal value of the true problem.

Although Eq. (12) has already reduced the
problem scale, it is still not easy to solve and will

be time-consuming. As mentioned before, the
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disruption scenario (2 and the first-stage solutions
set X are finite, so the combination (Cartesian
product) set of 2 X X is also finite. For given x ,
the objective function on the first-stage model is

easy to obtain since it is linear. Meanwhile, the
N

minimization on sample average function E Qlx,
n=1

0")/ N’ can be degenerated as N’ minimization
problem Q(x,w) . Therefore, the heuristic equa-
tion in Ref. [23] can be applied to intuitively ex-
press the lower bound for Q(x,w") , which is
Ly (Qxsa)) = L (Qlxsa)) + [Upy (Qzsw)) —
L, (Q(x ")) ] {[Prin (Qlx,sw))+17/2}F
(14
where j represents the index of sampling from re-
construction solutions. When j — oo,

lim Pr, (Q(z,0")) =1, so
lim {([Pry (Q(zx,w”))+1]/2}% = 1, thus

Lj+1 (Q(I,w”)) WiH
U]+1 (Q(fa(l)”)) . { [Prj+1 (Q(I,a)"))—F 1] /2} K iS

used instead of simple form Pr, (Q(x,w")) be-

asymptotically  equal

cause when j is small, the lower bound estimator
can increase more quickly. The parameter K con-
trols the increasing step. It is obvious that Lz, ()
can set to be 0.

To avoid identical samples generated, a non-
replacement way to get re-construction samples is
chosen. Suppose the number of feasible solutions
in the recourse model for given (x,w") is S(x,w”")
, and only one of them is optimal solution, then
Pr; (Q(x,w")) denotes the probability that in j
samples, the optimal solution will be obtained.
probability,
Pr; (Q(z,0"))=j/S(x,w"). For large-scale prob-

By simple knowledge of
lem, where S(x,w") cannot be obtained accurate-
ly, the value can be estimated based on the re-

construction solution tree structure.
3.4 Termination criteria

The most common termination criterion for
SAA method is the optimal gap, which equals
U(Z*)— L(Z") in our problem. Since all the
first-stage solutions can be enumerated and their
costs can be computed in advance, more work

will focus on the second-stage model. The

bounds will be used to evaluate the first-stage so-
lution. Thus, it is obvious that the algorithm
will stop when the upper bound of certain solu-
tion is lower than the lower bounds of the other
solutions, then the most promising one will be

obtained.

4 Computational Study

A small case was generated based on the op-
erational data from a Chinese airline. The flight
network held 6 airports (N,,, =6), which consis-
ted of 5 spoke airports and one hub airport.
There were 47 flight legs, which compose 23
flight cycles, operated by 9 aircraft of 2 types
(with MTT 40 and 60 min, and seat capacity of
200 and 250, respectively) in this case. 7 797
passengers who were grouped in 82 itineraries
traveled in the flight schedule network from
08 : 00 to 02 : 00 in the next day. T, was defined
as 09 : 00—13: 00, T, 08 : 00—18 : 00, and T,
08 : 00-02 ¢ 00 in the next day. If some passen-
gers couldnot be re-accommodated during T, ,
they would be re-directed to the virtual spilled i-
tinerary. The other relative parameters and their
values are listed in Table 1. The algorithmic
framework was implemented in C++ and Python
on a laptop with 4 GB installed RAM and i5-
3317U CPU 1. 70 GHz.

For the first-stage, the capacity of the hub
was known. Three disruption scenarios were sim-
ulated to represent minor, medium, severe
weather conditions which would reduce the hub
capacity by 25%, 50% and 75% ., respectively.
To compare different weather conditions, differ-
ent probabilities on the three conditions were set
to generate different sets 2, and Qp as shown in

Table 2.

Table 1 Parameters in the small test instance
Parameter Value
Minimum connection time for passengers/min 30
The length of unit time period/min 60
Cost per passenger per minute/min $1

K 10
N 1 000
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Table 2 Probability of scenario set

Scenario set Wminor

Wmedium Wsevere
0 0.5 0.3 0.2
Op 0.2 0.3 0.5

The first-stage model has 3 solutions (repre-
sented by x, » x; , x3; )., and the second-stage
model will be used to evaluate the influence of
those solutions under stochastic disruptions. Ta-
ble 3 lists the computational results of the two
different scenario sets. LB, UB, and OG repre-
sent lower bound, upper bound, and optimal
gap, respectively. Since 2, had a more positive
weather condition forecast than Qy, the objective
values of their three solutions exhibited much
lesser cost than the counterparts of the latter
ones. The optimal gap for each solution was a-
round 5% , which was good enough for operation-
al problems. The two problems both chose first-
stage solution x; , which indicated that under
such two different uncertainty scenario sets, the
performances of x;, were both promising. It was

reasonable because x, represented the decision

with least deviation of the original schedule.

Table 3 Computational results for the small case

Scenar- Numeri-
. . X X2 X3
io set cal item

LB 647 411.70 660 165.74 660 512.50

O UB 663 885.08 684 749.87 686 551.63
0G/% 2.54 5.66 5.93

LB 893 274.23 911 118.45 911 428.38

Qs UB 930 998.53 938 849,02 940 433.53
0G/% 4.22 5.10 5.28

To study the computing time of the algo-
rithm, different values of sample size N were set
to test the case under 2, . Fig. 3 shows the aver-
age CPU times for the problem with sample size
N € {200,400,++,2 000} .

computing time is almost linear to the sample

It indicates that the

size. As long as the computing time is shorter
than the unit time period, the recovery process
can be conducted dynamically to accommodate
airlines daily operation under stochastic circum-
stances.

Fig. 4 shows the upperbounds, lower bounds,

900
800
700

L, 600}

2500

5 400

3300
200
100

0 1 1 1 1 )
200 600 1 000 1400 1 800 2200
Fig.3 Average CPU times for different N

~ 664300
2 664100
2 663900
£ 663 700
663 500 s s s . -
200 600 1000 1400 1800 2200
N
(a) Upper bound
§ 647 800
R 647600
=
“%’ 647 400
= 647200 - - - - |
200 600 1000 1 400 1800 2200
N
(b) Lower bound
= 2560
£ 2550
o
= 2540
£ 2530
& 252 - s s -
200 600 1000 1400 1800 2200
N
(c) Optimmal gap

Fig.4 Upper bound, lower bound, and optimal gap for
different N

and optimal gaps for different sample sizes range
from 200 to 2 000. Figs. 4 (a,b) show that the
upper bounds and lower bounds will decrease mo-
notonously when N increases, which indicats that
better solutions will be obtained with larger N .
Fig. 4 (¢) shows the optimal gap also has the de-
creasing trend although there are some outliers
Considering the CPU

time performance showed in Fig. 3, it is obvious

due to the stochasticity.

that there is trade-off between computing time
and the solution quality. Decision makers can
choose appropriate sample size based on the avail-

able response time when irregularity happens.
5 Conclusions

In this paper, flight recovery problem combi-
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ning flight timetable, fleet re-assignment and
passenger re-accommodation under uncertain hub
capacity was studied. It was modeled as a flight
cycle oriented two-stage integer stochastic prob-
lem. Since the model had some special structure
features, an algorithmic framework based on
sample average approximation and greedy heuris-
tic methods was designed. The case from a Chi-
nese airline was chosen to test the method. The
results showed that for a small sample size, the
optimal gap was around 5%, which satisfied op-
erational problems. The computing times were
also tracked and they were linear to the sample
size. Thus, the proposed method showed its abil-
ity of obtaining satisfying solution in tractable
time.

There are some interesting problems raised
for future work during the research. Theoretical-
ly, if parallel computing technique is used, every
first-stage model solution can be sent to different
CPUs, and with high-speed computer, the com-
puting time can be controlled to be shorter than a
smaller time period, like 5 min. This requires
large scales of tests to calibrate and evaluate. The
disruption scenario set is assumed to be finite in
this paper, and this situation can be extended into

a scenario tree to represent more precise stochas-

tic information on the disruption.
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