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Abstract: A clustering algorithm and a probability statistics method were applied to different phases of a flight to
analyze operation time during aircraft ground taxiing and airborne flight. And the clustering pattern, distribution
characteristics and dynamically changing rules of the two phases were identified. Further, an estimate method was
established to measure operation time of flight legs, with creative steps of calculating individual segment separately
and then integrating them accordingly. The method can both objectively and dynamically measure operation time,

and accurately reflect real situation. It helps to better utilize airport slot resources and provides a strong support for
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air traffic flow management when scheduling flight plan in strategic and pre-tactic phases.
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0 Introduction

With the rapid increase of air traffic flow in
China, the imbalance between demand and supply
in flight slot resources has challenged operational
management. Air traffic management (ATM)
has focused on how to scientifically formulate ad-
vanced flight plans and make full use of airport
slot resources. Further, a standard operation
time of flight legs is critical to establishing and
checking flight schedules. Therefore, how to
fairly and effectively estimate the standard opera-
tion time is a key issue faced by flight scheduling
planners.

Some domestic and foreign airlines have car-
ried out relevant research. Based on their operat-
ing data, they have made comparative analyses on
different seasons, and set the standard operation
time of flight legs in the corresponding flight
route according to their respective strategies.

Their estimations usually involve operation strat-

egies (e. g. economical cruise and minimum flight
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time) , cost control and performance assessment,
etc. However, these processes are somewhat lim-
ited and selfish, and are difficult to be used as u-
nified references for flight scheduling and coordi-
nating. Since 2007, Eurocontrol has carried out
annually periodic performance evaluation of its air
traffic management"'. Later, it cooperated with
Federal Aviation Administration to contrast oper-
ations between Europe and USAM™, and discussed
time deviations in different phases of flight opera-
tion as well as key phases leading to deviations.
Because of its high uncertainty, taxi-out phase
has been extensively studied in terms of its pre-
diction and measurement* . Some studies fo-
cused on calculating time delay and variation re-
lated to runway and taxiway under dynamic and
random conditions; others focused on the short-
term prediction of taxi-out time to enhance the ac-
curacy of prediction by queuing model™®” or rein-
forcement learning algorithm™®, As most of the

studies aimed at the needs of airports or airlines

and adopted probability analysis based on histori-
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cal data for time calculation, they failed to fully
reflect the law of change of flight leg operation.
Also, with only a certain operation phase as the
object, they focused on real-time operation of
flights, while failing to effectively estimate the o-
verall operation time of flight legs. Therefore,
they provide only a limited support for air traffic
flow management when scheduling advanced
flight in the strategic and pre-tactical phases.
With regard to current relatively rough sta-
tistical methods, we explored clustering models,
distribution characteristics and dynamic rules in
each phase of flight leg operation from big data
through data mining and probability analysis, in
order to establish an overall, effective estimation
method for the standard operation time of flight
legs. We separately analyzed the time required by
taxi-out phase, airborne flight phase and taxi-in
phase and integrated them accordingly, therefore
we enhanced the accuracy of operation time esti-
mation. The method is consistent with the char-
acteristics of flight leg operation and current con-
trol capabilities. Moreover, the feasibility of this

method has been verified by typical example.

1  Analysis on Operation Time of
Flight Legs

1.1 Definition of standard operation time of

flight legs

Flight leg refers to the scheduled air trans-
port route of an aircraft with a certain commercial
load between two cities. The concept of standard
operation time of flight legs is used to objectively
measure the reference time of flight operation
from one city to another, therefore to reflect the
average level of flight operation under normal
conditions. Definition elements include: airport
of departure, airport of arrival, aircraft type and
season, etc.

From the perspective of time span, flight op-
eration starts from off-block time ( push-back
time) and ends at in-block time (push-in time).,

covering taxi-out, flight (airborne) and taxi-in

[5:10]  Therefore, the standard operation

phases
time of flight legs is the total time spent of these
three phases. Taxi-out time is defined as the du-
ration of actual off-block to departure, taxi-in
time from arrival to actual in-block, and flight

time the actual airborne flight time.

1.2 Characteristic analysis of operation time of
flight legs

Since operations of the three phases are inde-
pendent from each other and influenced by differ-
ent factors, they are analyzed separately.

1.2.1 Analysis of taxiing time based on cluste-
ring algorithm

Calculating and predicting taxiing time for a
certain flight can be more accurate, if positions of
parking stand and runway are taken into account.
However, the result cannot reflect the overall sit-
uation of airport surface operation, and therefore
it is more applicable to the tactical phase of air
traffic flow management (ATFM). The average
taxiing time can be regarded as a reference time
for taxi-out phase, which is more suitable for
strategic/pre-tactic phases. In typical hub air-
ports. the position relationships between terminal
and runway, or terminal and taxiway, may lead
to obviously different taxiing times, if flights
parking at different terminals. For example, in
2013, at Beijing Capital International Airport
(PEK), the average taxi-out time of T1 (Termi-
nal 1), T2 (Terminal 2) and T3 (Terminal 3)
was 24. 1, 20. 4 and 18. 2 min, respectively.
Therefore, a single terminal of hub airports can
also serve as the object of analysis for taxiing
phase.

The research data came from the {light plan
management system used by air traffic control
(ATC) units. The data consists of tow parts;:
Various flight departure/arrival time and ground
taxiing information. Based on the results of cor-
relation analysis, the relationships of relative dis-
tribution among average taxiing time, airport
traffic flow and arrival/departure ratios are ana-

lyzed.



No. 4 Yuan Ligang. et al. Estimation of Standard Operation Time of Flight Legs--- 493

We took Guangzhou Baiyun International
Airport(CAN) and PEK as examples. When in-
creasing traffic flow in airports/terminals, taxi-
out time of flights was gradually increasing;
when departure or arrival ratio was high, taxi-out

time remained at a relatively low level; when arri-
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val ratio was approximate to departure ratio and
the degree of mixing was high, taxi-out time sig-
nificantly increased as a whole. Figs. 1(a—d) il-
lustrate these relations. As an independent analy-
sis object, PEK T3 followed the same change pat-
tern, as shown in Figs. 1(e—1).
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Fig. 1 Relationship of distribution between taxi-out time and other variables

Similar phenomenon also occurred in taxi-in
phase of flights, as shown in Fig. 2. However,
compared with taxi-out phase, its range of varia-
tion is relatively weakened.

As Figs. 1,2 show quite obvious clustering,
based on the data conditions of large samples, ef-

ficient C-means clustering algorithm applicable to

continuous attributes should be considered for

[ Tts main idea is to utilize iterative

partitioning
process to divide data set into different classes, so
as to achieve intra-class compactness and inter-
class independence. Clustering aims at separately
exploring the characteristic patterns of taxi-in and

taxi-out phases, with taxiing time, traffic flow
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Fig. 2 Relationship of distribution between taxi-in
time and other variables

and arrival/departure ratios as eigenvectors™?.

Table 1 shows the clustering results of taxi-
out phase for PEK and PEK T3. Partitioned data
has the following characteristic patterns: (1) With
high departure ratios and moderate traffic flow,
the level of average taxi-out time is low; (2)
With low departure ratios and moderate traffic
flow, the level of average taxi-out time is the
lowest; (3) With arrival ratios approximate to
departure ratios and high traffic flow, the average
taxi-out time markedly increases.

Table 2 shows the clustering results of taxi-
in phases for CAN and PEK T3. It can be found
that the level of average taxi-in time of CAN is
relatively high with low departure ratios and
moderate traffic flow, while the taxi-in phase for
PEK T3 is the most time-consuming with rela-
tively balanced arrival and departure ratios and
high-load traffic flow. This indicates different op-
eration characteristics between airports. Never-
theless, from the perspective of their distribution
relationship, both exhibited obvious traits of clas-
sifying and clustering. Compared with taxi-out

phase, taxi-in times are less different among vari-

ous clusters.

Table 1 Clustering results of taxi-out phase of PEK

Attribute Cluster]l Cluster2 Cluster3
Average taxi-out time of PEK 21.546 17.321 25.578
Traffic flow of PEK 53 31 79
Departfure ratios of PEK/ % 89.13 25.21 48. 46
Number of sample in cluster 813 1130 4110
Average taxi-out time of T3 18.686 15.941 25.071
Traffic flow of T3 28 20 43
Departure ratios of T3/ % 84.36  23.09  49.48

Number of sample in cluster 977 1274 3 482

Table 2 Clustering results of taxi-in phase for PEK T3 and

CAN

Attribute Cluster] ~ Cluster2  Cluster3
Average taxi-in time of CAN 8. 41 9.09 7.59
Traffic flow of CAN 13 37 59
Arrival ratios of CAN/% 72.191 11 21.117 98 51.287 13
Number of sample in cluster 315 423 2 620
Average taxi-in time of T3 9.2936  8.3095  9.6354
Traffic flow of T3 23 37 44
Arrival ratios of T3/ % 79.256 27 20.107 63 51.064 9
Number of sample in cluster 576 309 1 845

Furthermore, the clustered sample data is
correlated with statistical time slices for conver-
sion to the proportional relation of samples of dif-
ferent clusters in each time slice. Figs. 3.4 show
the data distribution of taxi-out phase for PEK
and taxi-in phase for CAN, respectively. Vertical
axis of the pictures refers to the percentage of the
whole samples which is used in clustering. Dur-
ing a 24-hour operation, clustered data character-
istics of taxi phases tend to vary obviously in time
frame distribution. From 7:00 to 9:00, most of
the flights depart from airports. The taxi-out
phase is characterized by Cluster 1, while the tax-
i-in phase is mainly characterized by Cluster 2.
From 9:00 to 23:00, due to arrivals mixing with
departures as well as heavy traffic flow, the char-
acteristics of Cluster 3 of taxi-in/taxi-out phases
are obvious. From 22:00 to early morning, when
flights are mainly inbound, Cluster 2 is character-
istic of taxi-out phases, and Cluster 1 is charac-
teristic of taxi-in phases.

Therefore, we attempted to extract operation
characteristics according to different time distri-

butions in airports/terminals, therefore to meas-
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Fig. 4 24-hour sample distribution of each cluster for

taxi-in phase of CAN

ure the time of taxi phases in a dynamic and dif-
ferentiated way. The approach can enhance the
accuracy and applicability of reference , and nar-
row down the deviation from actual situations.
1.2.2 Flight time analysis based on probability
distribution

Compared with taxiing phases during arrival
and departure, airborne flight phase is affected by
numerous factors including airline flight strate-
gies, flow control, weather (monsoon), destina-
tion airport and terminal area capacity, etc. , re-
sulting in volatile operation times and highly dis-
crete data. Therefore, key variables, like flight
time, destination airport traffic and arrival/depar-
ture ratios, can neither reflect significant correla-
tion in value, nor present remarkable traits for
different time distribution clusters. As shown in
Figs. 5,6, clustering is not as obvious as taxiing
phase. All clusters are overlapped in time, with-
out apparent changing pattern. In spite of this,
clustering results, to some extent, can reflect
changing characteristics of operations at destina-
tion airport. For example, the timeframes with

high proportion of Cluster 1 correspond to peak

hours of departure, while those of Cluster 3 mir-

ror peak hours of arrival.
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airborne flight phase from PEK to CAN

Operating reference times, currently adopted
by airlines and ATC authorities, varies in sea-
sons, mainly because of normal influence of mon-
soon on flight. The relative HL-LOW relation-
ship between the actually measured data and the
long-term mean value is compared by introducing
the concept "anomaly” into meteorology. Take the
flight leg from PEK to CAN as an example. the
mean flight time of the leg from April 2010 to
March 2013 as the long-term mean was used to
measure the relative variation trend of monthly
mean flight time. As shown in Fig. 7, flight time

tends to periodically vary with winter-spring and
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Fig. 7 Anomaly state of average flight time for

summer-fall seasons. January and July witness
the highest "anomaly” state due to objective fac-
tors like special weather, holiday demand varia-
tion and so forth.

Furthermore, assuming that flight time is a
random variable following certain statistical dis-
tribution, non-linear fitting is made according-
lyt* 14 If meteorological and traffic control fac-
tors are ignored, cruising speed of aircraft will
impose the most immediate impact on flight time.
Cruise Mach number can be used as a reference to
classify aircraft types. For example, we analyzed
the data of flight legs from PEK to CAN in the
winter and the spring of 2012 in terms of unspeci-
fied aircraft types and specified aircraft types(0. 8—
0.89 M), and found they followed Gaussian dis-
tribution (GaussAmp), Cauchy distribution and
Logarithmic normal distribution (LogNormal).
As flight time is actually in slight right-skewed
distribution, the LogNormal distribution of data
and logarithms has a higher degree of fitting, de-
scribed as Eq. (1). The fitting results are shown
in Figs. 8—9. The fitted functions are illustrated
in Eqs. (2),(3). And Table 3 shows the fitting

output of different distribution function.
1 Probability of flight time
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Fig. 8 Probability distribution of airborne flight time
for PEK-CAN in winter and spring
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Fig. 9  Probability distribution of airborne flight time
(aircraft type as 0. 8—0.89 M) for PEK-CAN

in winter and spring

Table 3 The comparison of different non-linear fitting

o Unspecified Aircraft type
Fitting .
| aircraft type (0.8—0.89 M)
result GuassAmp LogNormal GuassAmp LogNormal
Adj. R- -
. 0.981 98 0.985 36 0.959 67 0. 969 36
Square
Root-MSE 0.188 63 0.180 33 0.287 16 0.275 32
Standard
0.031 06 0.029 96 0.052 26 0.049 54
error
F value 2 106.407 2 306.763 941.599 1 025.852
Prob>F 0 0 0 0

Numerous fitting results demonstrated that
flight time could well conform to LogNormal dis-
tribution for different time spans ( seasons/
months) or various aircraft in flight legs in differ-
ent directions. Its stable probability distribution
characteristics are conducive to flight time estima-

tion and sample selection.
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2  Design of Estimation Methods for

Standard Operation Time

Based on the analysis of distribution charac-
teristics of operation time in different phases of
flight legs, an overall estimation method for the
standard operation time of flight legs was de-
signed. The specific steps are stated as follows:

Step 1 Screen abnormal data of flight opera-
tion

The historical data of flight operation,
gleaned from air traffic service telegraphs and air-
craft communication addressing &. reporting sys-
tem, contains time information, such as depar-
ture/arrival time and in-block/off-block time,
aircraft type information and company informa-
tion. Wild data are identified when they exhibit
the following traits: (1) Inconsistency between
scheduled departure/arrival airports and actual
departure/arrival airports; (2) Lack of main time
fields or abnormity of message decoding; (3)
Flight status indicated as return, diversion or
cancel; (4) Abnormal sequence of off-block time/
push-back time, actual departure time, actual ar-
rival time, and in-block time/push-in time. Based
on initial screening results, operation time of dif-
ferent phases of a specific flight can be calculated
and labeled as vector T, = [ Tgxew, Theh, , TiExin]

taxiout

where T§*°" indicates the taxi-out time of flight 7

in airport A; TH . the flight time of flight i from

taxiin

airport A to airport B, and T§%" the taxi-in time
of flight ¢ in airport B.

Step 2 Calculate the operation time of taxi-
out/taxi-in phases

On the basis of single flight sample data, the
sample set U* of taxi-out time estimation of air-
port A can be defined. U* = [u? ,u? -+, ul] , u?
€ R*, where u? consists of hourly mean taxi-out
time of airport/terminal A, hourly aircraft move-
ments and hourly departure ratios. The departure
ratio is the ratio of hourly departure flights to
hourly airport traffic flow.

With reference to the analysis results of op-
erating data of taxi phases, C-means clustering

algorithm is adopted for partitioning. Its squared

error criterion function and cluster center upda-
ting formula are Eqs. (4) ,(5), where £ is the
number of clusters partitioned

k
EZZZ‘Jci—m;

i=1 ,re(‘l

m,z‘%(zm (5)

tlorec

’ (€Y

Since C-means algorithm is sensitive to wild
value, extreme data may emerge in samples,
which needs to be re-filtered during calculation.
Its conditions (screening standards) should be de-
termined depending on different airport opera-

A

tions. U” is divided into n clusters via iteration,

with the corresponding cluster center P
pbu Pz Pus

P21 P2z P

P _ 21 . 22 23

P Puz Pus

where p, =(p; s pi» pis) is the component value of
cluster center of Cluster . Operation patterns
can be recognized according to time distribution
characteristics of different cluster samples. A sin-
gle day can be divided into several timeframes.,
and the corresponding dynamic taxi-out time of
airport/terminal A Tf;‘f‘i?(_“f[ﬂ can be set, where
0t »t; <24, t; < t; ,referring to the taxi-out
reference time of airport A from ¢ to¢; . The av-
erage taxi-out time component ( p; ) of the cor-
responding cluster center ( p; ) from¢; to¢; is used
as the reference value.

The similar method can be applied to the tax-
i-in phase. The samplesV”® , V¥ = [}, v}, ,v0 ],
v? € R® are set. The attribute vector v? comprises
hourly mean taxi-in time, hourly aircraft move-
ments and hourly arrival ratio. The samples are
also divided into n clusters. The dynamic taxi-in

taxiin

time ( B ) of airport B can be set base on
the results of clustering distribution.
Step 3

phases

Calculate operation time of flight

For the flight leg from airport/terminal A to
airport B, based on the periodic relative variation
characteristics of flight time and demand fluctua-
tions of specific months, the time span of estima-

tion ( season/month, etc.) is set, and flight
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phase samples is set by aircraft types according to

cruising labeled as
fligh fligh Mgt

[TA‘EESJ ’ TAIE‘I;.,Z L] TAli‘iz.,L] ’

number of flights from airport A to airport B at a

y light 0. 8 M _
A—B =

speed,

where L is the

cruising speed of 0. 8—0.89 M within a statistical
timeframe,

Estimation of the standard operation time is
to reflect the average level of flight operation in a
normal condition, so it is necessary to remove
high abnormal data from the samples. The con-
ventional method uses confidence level and confi-
dence interval to eliminate abnormal data, usually
leaving low probability value in certain sample
sets. The abnormal value recognition method
based on single-value probability distribution-**-
can be used to prevent abnormal value from being
identified irrationally. Generally, abnormal value
or isolated point occurs at extreme values. The
judgment conditions of maximum and minimum

abnormal values in the samples can be set as

P = max. (TRE'E5) (6)

pmn = _myin | (TH5D D
+oo

ij Fordr < 6 (8)
Pmax

L X f‘“f“f@-)dx ) 9

where f(x) refers to the fitted LogNormal distri-
bution function of flight time, and § the accepta-
ble frequency of abnormal value test, generally
taken as 0. 2. When the maximum value p.. and
the minimum value p;, in the samples satisfy the
above inequality, these maximum and minimum
values can be deemed as abnormal, and should be
screened from the samples. Then, pu. and puw
should be updated. The judgment process will be
repeated until the inequality is not satisfied.
Screened samples should serve as the estima-
tion basis of flight time. For the sake of fairness,
neglecting which airlines the flights belong to,
only the overall mean value of effective samples is
taken as the flight time for specific seasons/
months and particular aircraft types, as described
in Eq. (10), where N refers to the number of ef-

fective samples screened
N

i flight.
N ;} Tlight, & (10)

Tflight- e
A—B —

Step 4 Measure the operation time of flight
legs comprehensively
According to the definition of standard oper-
ation time of flight legs, estimation results of op-
eration time of all phases are integrated. T% 5 in-
dicates the standard operation time of & -type air-
craft in the flight leg A—B , and is applicable to
flight tasks with the scheduled departure time in
[t:,t; ] and the scheduled arrival time in [z, .2, ]| »
illustrated as
Th 5= ﬁi’.ﬂ[oz:”.g: + TR+ T . (D)
The applicable operation time within differ-
ent timeframes of a whole day can be thus deter-

mined.

3 Case Verification

The typically busy flight leg from PEK to
CAN within China was selected as the object for
analysis, and PEK T3 the object for estimation of
taxi-out time. Basic data was extracted from the
database of " flight plan management system”
which recorded the actual departure/arrival time
and off-block/in-block time of flights.
winter and spring seasons from November 2012 to
March 2013, there are 75 336, 3 497 and 43 707

effective samples of taxi-out, airborne flight and

During

taxi-in phases, respectively. The operation time
of each phase was estimated independently, and
the results are shown in Tables 4—6. Due to

space limitations, the process of calculation is not
described here.

Table 4 Dynamic taxi-out reference time of PEK T3

Departure airport Taxi-out reference

Departure time

terminal time/ min
[22:00,07:00) 16

PEK T3 [07:00,09:00) 19
[09:00,22:00) 25

Table 5 Dynamic taxi-in reference time of CAN

Arrival airport Taxi-in reference

Arrival time

terminal time/min
[00:00,07:00) 8
CAN [07:00,09:00) 9
[09:00,24:00) 8

Table 6 Airborne flight reference time from PEK to CAN

Flight leg Aircraft type Flight reference time/min
PEK-CAN 0.7—0.79 M 174
PEK-CAN 0.8—0.89 M 167
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With the scheduled departure time and air-
craft type as matching conditions, the corre-
sponding taxi-out, airborne flight and taxi-in time
of flights were determined. The dynamic standard
operation time reference of flight legs was ob-
tained via accumulation of time of different pha-
ses, as shown in Table 7. Estimation results pro-
vided dynamic operation time.

Table 7 Standard operation time of flight leg "PEK-CAN"

Scheduled departure time Operation time/min

0.8—0.89 M 0.7—0.79 M

Aircraft type

[22:00,04:00) 193 198
[04:00,06:00) 194 199
[06:00,07:00) 193 198
[07:00,09:00) 196 201
[09:00,22:00) 202 207
Published operation time 195 195

In order to verify the effectiveness of the
methods, the values estimated with the algorithm
in Table 6 were compared with actually measured
values and other statistical and reference values,
as shown in Table 8, where "actually measured
mean” was obtained from calculating historical da-
ta of the flight leg from PEK T3 to CAN in No-
vember 2013. Three main effective timeframes of
the airports were selected to calculate the corre-
sponding mean operation time of this leg. Based
on the same data sample, the conventional proba-
bility density method was introduced for "statisti-
cal value”, the overall operation time was chosen
as the object, and confidence ratio was set as 0. 6.
Results showed that 0. 7—0. 79 M type held the
operation time of 213 min and 0. 8—0. 89 M 205
min. " Published value” was the fixed reference
time published by ATM in the year;” company
reference value’ was the operation time of {light
legs used by certain major airlines for internal ref-
erence.

As illustrated in Table 8, "published value”
desirably reflects the operation time of 0. 8—
0.89 M type, but has a big error for 0. 7—0. 79
M type. This indicates that this fixed reference
value focuses on the operating level of aircraft
types with a high proportion in flight legs. "Sta-
tistical value” has certain accuracy in peak hours

(departure demand approximate to arrival de-

mand) of airport operations, but it has a larger
deviation within other timeframes. Compared
with measured value, "corporate reference value”
has the largest deviation as a whole, reflecting
the operation strategy of airlines, i. e. aiming at
acquiring favorable slot resources through less
scheduled reference time, so as to improve the u-
tilization rate of aircraft.

Table 8  Actually measured value versus various reference

values for flight leg "PEK-CAN"

Time frame of departure/min

Various values [7.00, [10.00, [22.00,
10:00) 22:00) 23:00)
Actually measured mean
203 210 202
(0.7—0.79 M)
Actually measured mean
194 202 194
(0.8—0.89 M)
Published value 195 195 195
Company reference value 190 190 190
Statistical value (0. 7—
213 213 213
0.79 M)
Statistical value (0. 8
206 206 206
0.89 M)
Estimated value(0. 7—
201 207 198
0.79 M)
Estimated value (0. 8—
196 202 193
0.89 M)
Deviation of published value
8 15 7
(0.7—0.79 M)
Deviation of published value . ; .
(0.8—0.89 M)
Deviation of company refer-
13 20 12
ence(0. 7—0.79 M)
Deviation of company refer-
4 12 4
ence(0. 8—0.89 M)
Deviation of statistical value
10 3 11
(0.7—0.79 M)
Deviation of statistical value
11 4 11
(0.8—0.89 M)
Deviation of estimated value ) 3 4
(0.7—0.79 M)
Deviation of estimated value
2 0 1

(0.8—0.89 M)

Therefore, due to different proneness and
single valuedness, the conventional statistical
method and all reference values obtained by it can
only be used as an acceptable reference within a
local range, although it still holds a larger devia-
tion which may adversely affect strategic/pre-tac-

tical flight scheduling.
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The " estimated value” based on clustering
and probabilistic algorithm is the closest to the
actually measured value, and deviation values
within various timeframes are less than 4 min.
Therefore, this algorithm is superior to others.
Compared with the performances of conventional
statistical methods and different fixed reference
time, its estimation results can flexibly display
dynamic variation models in a single day of flight
leg operation. For different flights, targeted and
differentiated reference values can be obtained de-
pending on the specific conditions. Through ef-
fective estimation of the operation time of all rele-
vant flight legs of destination airports, the accu-
racy of demand prediction for arrival and depar-
ture in a time window can be promoted, and the
rationality of development and approval of ad-
vance/next-day flight plans can be improved,
thus avoiding the waste of airport slot resources.
For specific changes of flight demands(e. g. dur-
ing traditional holiday) or special weather condi-
tions, the operating data of corresponding scenar-
ios can be collected for estimation and analysis
with this algorithm, so as to provide an targeted

reference time.

4 Conclusions

We first partitioned flight operation into
three phases and analyzed various relationships a-
mong mean taxiing time, traffic flow and arrival/
departure ratios, as well as clustering models and
The C-means

data mining algorithm based on such partition

time distribution characteristics.

was used for taxiing time analysis. Periodic varia-
tion rules of airborne flight time were analyzed
and corresponding probability density functions
were fitted. Thus, an estimation method was de-
signed. This method deals with each phase inde-
pendently and integrates them with different con-
ditions, therefore to dynamically measure the
standard operation time of flight legs for a single-
day. Moreover, the operating data from domestic
typical busy flight legs were used for verification.
Results showed that the analytical process and re-

sults of this method could objectively reflect the

actual flight leg operation and control capability,
and provided an effective data support for the a-
nalysis of factors influencing the operation of
flight legs, scientific development of advance
flight plans, prediction of operation simulation,
and examination of airline tasks.

Due to the lack of dynamic flight data (traj-
ectory), we did not delve into dynamic analysis of
flight time in this paper, and will further study
it, so as to explore the correlation and distribu-
tion characteristics of attributes for differentiated

calculation.
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