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Abstract: A scheduling model of closely spaced parallel runways for arrival aircraft was proposed, with multi-ob-
jections of the minimum flight delay cost, the maximum airport capacity, the minimum workload of air traffic con-
troller and the maximum fairness of airlines’ scheduling. The time interval between two runways and changes of
aircraft landing order were taken as the constraints. Genetic algorithm was used to solve the model, and the model
constrained unit delay cost of the aircraft with multiple flight tasks to reduce its delay influence range. Each objec-
tive function value or the fitness of particle unsatisfied the constrain condition would be punished. Finally, one hub
of a domestic airport was introduced to verify the algorithm and the model. The results showed that the genetic al-
gorithm presented strong convergence and timeliness for solving constraint multi-objective aircraft landing problem
on closely spaced parallel runways, and the optimization results were better than that of actual scheduling.
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0 Introduction

The growth rate of airport capacity has been
lagged behind the increasing aviation demand.
Some busy airports expanded runways to tackle
this problem. Compared with other configura-
tions, closely spaced parallel runways (CSPR),
i. e. » runways spaced less than 762 m, could bet-
ter improve the capacity of runway system, as
well as hold more flexibility for aircraft
landing "', Therefore, the CSPR's expansion has
become the first choice to alleviate the capacity-
demand contradiction. However, inadequate re-
search on CSPR and the stronger impact of the
wake flow between aircraft on CSPR renders schedu-
ling aircraft on CSPR a great challenge. So far, relat-

ed studies covered three aspects as follows:
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(1) CSPR's capacity: Capacity calculation

1 [2] 1 [3]

and evaluation mode , method for en-

[4-5]

mode
hancing capacity and the relationship between
runways operation modes and the theoretical ca-
pacity .

(2) Approach procedure to CSPR: Hammer
et al. and Eftek et al. proposed paired approach
procedurest™ ; Domino et al. analyzed the paired
approach procedure’s feasibility ?and Sun et al.
investigated its collision risk ; and Mundra
et al. analyzed the paired approach procedure’ s
advantages and the required hardware '/,

(3) Influence of wake turbulence and its
countermeasures: Rad " developed a concept of
dynamic separations using wake vortex predic-
tions, in order to reduce the wake effects. Ross-

| [13]

ow et a analyzed the propagation mechanism
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of the wake flow from a dynamic view and pro-
posed a method to evaluate the influence of wake
turbulence; Tian et al. "’ studied the time intervals of
aircraft landing on CSPR when the operational char-
acteristic of wake turbulence was the worst.

However, the research on CSPR had two
problems:

(1) Static state. Runway capacity, approach
mode and the influence of wake turbulence were
confined to theoretical research. Therefore, the
research results could not be directly applied to
practical scheduling.

(2) One-sidedness. Almost all researchers
confined to study a part of the factors influencing
runway scheduling. However, practical runway
scheduling was a complex optimization problem
and it was affected by various factors.

Many studies, domestic and abroad, on air-
craft arrival sequencing problems, have accom-
plished both theoretically and practically. But
those works mainly focused on how to sequence

[14-16]

the landing aircraft and improve its

1781, without studying multi-objective

efficiency
optimization problem.

Therefore, a CSPR scheduling model was
proposed to improve the operating efficiency of
CSPR, and therefore to ease the demand-supply
contradiction. The genetic algorithm was intro-
duced to solve the model. The model was de-
signed to obtain four objectives: the minimum de-
lay cost, the maximum runway capacity, the best

fairness among airlines and the minimum work-

load of air traffic controllers.

1 Modeling

Aircraft landing is defined as assigning land-
ing runway and landing time to certain aircraft
belonging to some airlines at one time window.
The goal of aircraft landing is to balance the de-
mand and the supply, and to minimize the opera-
tion cost. Scheduling is completed coordinately by
three parts: airlines, airport and air traffic con-
trol department. Safety holds the highest priority
during scheduling; economy the second, and fair-

ness the third. Targeting at the three goals, air-

ports should serve as many aircraft as possible
within limited time span while increasing aviation
business charges. Throughout this procedure, air
traffic controllers would face a critical challenge,
because the operating safety of airport terminal
can be improved by reducing the workload of con-
trollers while the number of aircraft landing on
the runways is increased. Therefore, we compre-
hensively considered the interests among the de-
partments when scheduling aircraft.

To simplify the problem, we assumed that:
Firstly, aircraft parking time was within 2 h and
the serving time of departure lounge bridges was
within 1 h. Security charge of the cargo was zero.
Secondly, runway occupying time of all aircraft
was 45 s. Finally, the basic information of the

aircraft was given.
1.1 Objective functions

The flights here are divided into two kinds:
multi-tasking flights and single-tasking flights.
The aircraft of the former will have other mis-
sions in h. So, the minimum delay cost Z, is giv-
en as

N
min Z, = >,C, =

i=1
ch’ (Tf’ - tf’ )175
N
2 TDf,Cf, (ty, =Ty )"+

E, <t <T,

i
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where N is the number of landing aircraft; C, the
delay cost of flight f; , which is related to its unit
time delay cost ¢, and delay time; e=0. 5 the coef-
ficient of super-liner growth. ¢, ,T, ,L, and E,
indicate the actual landing time, the target land-
ing time, the latest landing time and the earliest
landing time, respectively. If the aircraft of flight
/i has only one fly mission at the airport, the
flight is defined as unique tasking flight and ¢, =
1; otherwise the flight is multi-tasking flight and
¢;, = 0.2, is the penalty coefficient of the unit
time delay cost of multi-tasking flight and is ob-
tained by

cay

A, =1+ 2
: :,

i
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where ca, is the unit time delay cost of aircraft
executing flight f;.

Runway capacity Z, is defined as the number
of flights landing on the runway within 1 h. So,
the maximum runway capacity is given by

max/Z, = GO(N_I.) (3)
maX[/’_ - mlnf/’_

i i

The change number of landing order is used to
measure the workload of air traffic controllers Z,

here, so the minimum workload is given by

minZ, = >, |D, — D7 | )

[

where D, is actual landing order and D7 is target
landing order.

The best fairness is given by

5

minZ, = max ‘ X,—Y,

a€A
where Z, represents the fairness. X, and Y, are
the proportion of delay cost of flights and the pro-
portion of aviation business charges belonging to

airline a, and they are described as

2,C

JE— f‘( € F((

X, =—" (6)
C
/,ze:F E
U
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where F is a set of flights and F, a set of aircraft
belonging to airline a; U, the aviation business

charges of airline and A a set of airlines, a € A.

1.2 Constraint formulations

E, <1, <L, ®
>le, =1 €
reR

Eq. (8) illustrates constrains for all flights
landing time, and Eq. (9) the constraints of each
flight with only one runway. R is a set of run-
ways. If flight f; lands on runway r, &, = 1;
otherwise & ,=0.

The aircraft here are divided into three types
according to the strength of their wake flow:
Heavy (H), Middle (M) and Light (L.). The
landing time interval between the leading aircraft
and the trailing is not less than the minimum time
interval, and also not less than runway occupying

time. The constraint is given by

60 (¢, — ;) = max(ocs,.1> Scrpp +
(11— 0SS )S</,-./l, > +45) — Md i
Vit 10
where Scy,.s,> represents the separation time be-
tween flights f; and f; on the same runway and
SCridy> the separation time between flights f; and
f; on different runway. If flights f, and f; land
on the same runway, Tcsif)> =1, otherwise
ocr.r> = 0. If flight f; lands on the runway after
fis d”:'»’)) =1, otherwise d(‘/",/)) =0. M is a great
positive number.
The minimum time intervals between two

aircrafts landing on the same runway are shown in

Table 1.

Table 1 Minimum separation times between two aircraft on

the same runway Unit:s
) Following
Leading
H M L
H 99 133 196
M 74 107 131
L 74 80 98

The minimum time intervals between two air-
craft landing on different runways are obtained
through the relationship between the long term plan-
ning capacity of single runway and that of closely

spaced parallel runways, shown as Table 2.

Table 2 Minimum separation times between two aircraft on

different runway Unit:s
) Following
Leading
H M L
H 51 68 100
M 38 55 67
L 38 41 50

Actual runway capacity is not larger than the
ultimate capacity, and it is constrained as
Z, <V an
where V' is the ultimate capacity of runways.
Eq. (12) demonstrated the change number of
aircraft landing order
| D, — Dj | < Reset a2
M>0; i,5=1,--.N (13)
where Reset is the maximum change value of

landing order.
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2  Genetic Algorithm

2.1 Double chromosome encoding

Each chromosome consists of two chroma-
tids: one chromatid encodes the landing time,
and the other the landing runway, as shown in
Fig. 1.

Time =+ i oo i oo
Runway ==+ 0 = 1 -

Fig. 1 Double chromosome coding

2.2 Weighted average method

The weighted average method is divided into
two kinds: one is punishing each objective func-
tion value, and the other is punishing the fitness.
The former is simply called SFWM, and the lat-
ter is GFWM. The processes are shown as fol-
lows:

(1) The process of SFWM

(D Calculate each objective function value,
and punish each value of the particle violating the
constraints. For example, if particle e, violates
the constraints, and the number is m, each value z;
will be set into z; +m % (fix(log,, z;) + 1), where
fix(logo2;) represents the magnitude of z;.

@ Normalize the objective function values
according to the mapminmax function of MAT-
[LAB, and the fitness is equal to the weighted sum
of all normalized objective function values.

(2) The process of GFWM

(D Calculate each objective function value and
normalize each one.

@ Assign the weighted sum of the normal-
ized values to the fitness. If the particle violates

the constraints, then punish its fitness.
2.3 Operating steps of genetic algorithm

Step 1  Population initialization; Create matrix
P one column of full rank to ensure the diversity of
initial population. The row is equal to 2N, and the
column is n, where n is the population size.

Step 2

value of matrix P to matrix P’.

Calculate the fitness and assign the

Step 3 Selection; Sort all particles of initial

population in descending order of their fitness val-
ues, and the top 80% particles are chosen as the
next generation individuals candidate and assigned
to matrix O.

Step 4 Crossover: Assign the matrix P’ to
P’. Randomly generate one array W = w; w; *** w;
-w,y. The crossover process is operated as fol-
lows:

(D If w,=1, index= P’ (i, k), P/ (i, k)=
P (i.nt+1—Fk) and P’ (i,n+1—k)=index.

(2) If w; =0, corresponding position values
of the mating particles are not changed.

Step 5

number, and the mutation process is operated as:

Mutation: Randomly generate one

(1) If the number is less than the mutation
probability, generate one positive integer [ be-
tween 0 and 2N.

D If the positive integer [ is odd, randomly
generate one integer x between — 30 and 30 and
assign it to P'(L, k).

@ 1If the positive integer [ is even, P"(l, k)
is equal to its opposite.

(2) If the number is not less than the muta-
tion probability, do not perform mutation opera-
tion.

Step 6 Update population: The matrix Q is
equal to the combination of matrix O, P’ and P’.
Firstly, delete the same column of matrix Q to
protect the diversity of the population, and assign
the remaining column to matrix Q. Secondly,
calculate the fitness of matrix Q" and sort it in de-
scending order. Finally, select the top n particles
and assign them to matrix P.

Step 7 Stop and output the optimal solution

if the maximum generation number is achieved.

Otherwise, go to Step 2.

3 Results

The genetic algorithms presented above were
implemented in MATLAB on a 3. 40 GHz PC
with 8 192 MB memory. The parameters of the
simulation experiment were set as: n = 100,
Reset=3; the maximum iterative algebra was 100
and the mutation probability was equal to 0. 01.

The weight values of each objective function were
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equal to 0.4, 0.3, 0.15 and 0. 15, respectively.

We took one hub airport as an example to analyze

the model, and some information of the flights

were shown in Table 3.

Table 3 Sample data of flights

Flight No. D7, Ty, Ly, Type ||Flight No. D7, Ty, Ty, Type ||Flight No. D7, Ty, Ty, Type
MU212 1 8:15 7:49 M MU5506 14 9:25 9:54 M CZ6521 27 9:45 9:33 M
AY057 2 8§+ 20 7356 H BA169 15 9:25 11:44 H SU208 28 9:45 10:29 H
CA1965 3 8:35 8:30 M MU517 16 9:30 9:00 M KE893 29 9:45 9:38 H
HO1276 4 8:50 9:08 M CA8953 17 9:30 9:04 M MU294 30 9:45 10:12 M
MU2881 B 8§:55 9:08 M CI581 18 9:30 9:14 H FM9070 31 9:50 10:17 M
MU5586 6 8:55 8:52 M MU2402 19 9:35 9:36 M MU521 32 9:50 9:45 M
GE332 7 8:55 8137 M MU5544 20 9:35 9:17 M MU726 33 9:50 9:47 M
MU5512 8 9:00 9:19 M MU5660 21 9:35 9:13 M PR338 34 9:50 9:40 M
FM9258 9 9:15 10:11 M FM9328 22 9+40 9:27 M MU5052 35 9:50 9:42 H
MU5534 10 9:15 9:02 M FM9402 23 9:40 9:44 M MU5342 36 9:55 9:28 M
MU5286 11 9:20 9:15 M MU5468 24  9:40 9:19 M FM9308 37 9:+55 9:33 M
MU5466 12 9:20 9:09 M KES875 25 9:+40 9:24 M MU5183 38 9:55 9:05 M
VS250 13920 9:11 H 308971 26 9:45 9: 31 M HU7205 39 10:00 9: 39 M

Fig. 2 illustrates all the objective function
values obtained by three kinds of algorithms,
where "AS" is the abbreviation for actual schedu-
ling of the airport. Taking the values of AS as the
reference, the percentage increase of the objective
function value is shown in the secondary vertical
axis of Fig. 2.

Fig. 2 indicates that delay cost of genetic al-
gorithm is significantly less than that of AS, and
runway capacity of the former is obviously im-
proved. In particular, runway capacity of SFWM
is nearly 2. 5 times of that of AS. The reduction

Increase perc

GFWM SFWM

15}
3}
St
5}
o
o
z:
34
g
5}
=

SR

GFWM

L

AS SFWM

Fig. 2

of delay cost is beneficial to airline's operation.
The improvement of runway capacity can not only
increase airport revenue, but also improve the op-
erating efficiency of runway surface and the safety
of air transportation. The fairness of the two
methods was increased by 77.39% and 84.29% ,
respectively. The increase of the fairness can
weaken monopoly of some airlines to promote
harmonious development of aviation transporta-
tion market. There were 39 aircrafts waiting for
landing within the scheduling time window. If the

change number of landing order of all aircraft was

Increase percen

|

AS GFWM SFWM

Increase percer

AS GFWM SFWM

(d)

Objective values obtained by three different methods
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the maximum, i. e. , 3, the total change number
would be equal to 117. Fig. 2 shows that AS s e-
qual to 268. So the scheme of AS was not suitable
to the model here. However, the schemes ob-
tained by the two kinds of genetic algorithm met
Eq. (12) in section 1. 3. Table 4 shows the objec-

tive function values in different cases.

Table 4 Results in different simulation conditions

Simulation SFWM GFWM
result Z Z, Zy Z Z  Z, Z, Z,

The best Z, 29 535 23 70 0.098 278 073 16 46 0.063

The best Z, 52 970 26 36 0.097 413 145 18 62 0.063
The best Z; 52 970 26 36 0.097 342 692 16 44 0.074
The best Z, 37 127 23 72 0.053 278 073 16 46 0.063

The following conclusions can be summa-
rized from Table 4.

(1) When Z,is optimal, i. e. : the value of Z,
is the minimum, the delay cost is the minimum.
However, runway capacity is the minimum, and
the value of Z, of SFWM is the maximum., i. e. ,
the fairness of scheduling is the worst. On the
contrary, that of GFWM is the minimum, i. e. ,
the fairness was the best.

(2) When runway capacity is the maximum,
the value of Z; of SFWM is also optimal. Howev-
er, delay cost is the maximum, and the second
method has the maximum workload and delay
cost.

(3) When the value of Z; is the minimum, it
represents the workload is the minimum. The
first method also has the optimal Z,. The second
method has the minimum runway capacity and
the worst fairness.

(4) When Z, is optimal, it represents the
fairness is the best. Delay cost of the second
method is the minimum. However, two methods

And the

workload of first method is the maximum.

have the minimum runway capacity.

The conclusions presented above indicate an
almost negative correlation between delay cost
and runway capacity.

According to the three evaluation grades: ex-
cellent(ex), average(av) and poor(po), the data

of Table 4 can be translated into those in Table 5.

Table 5 Evaluation grades from Table 4

Simulation SFWM GFWM
result Z Z, Z Z, Z Z, Zs Z,

The best Z, ex po av po ex po av  ex
The best Z, po ex ext av po ex po ex
The best Z; po ex ext av av po ex po

The best Z, av. po po ext ext po av  ex

The three evaluation grades were respectively
assigned to 3, 2 and 1, and thus the scores of two

methods are shown in Table 6.

Table 6 Evaluation scores of the scheme

Simulation result SFWM GFWM
The best Z, 7 9
The best Z, 9 8
The best Z, 9 7
The best Z, 7 9

Some conclusions can be drawn from Table
6: Firstly, the comprehensive score of SFWM is
A higher

score indicates the scheme is more suitable for

higher when Z, and Z, are optimal.

putting into practice. Secondly, the comprehen-
sive scores of GFWM is higher when Z, and Z,
are optimal. Therefore, decision makers can se-
lect the appropriate scheduling scheme according
to different scheduling environment.

The convergence was an effective medium to
test intelligent algorithm, and the variation of fit-
ness values could excellently reflect it, which are

shown in Figs. 3, 4.

Fig.3 Fitness values of SFWM in each generation

Figs. 3,4 indicate that the two kinds of ge-
netic algorithms both have excellent convergence
with declining fitness. In addition, the conver-

gence of the latter is better than that of the first
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Fig.4 Fitness values of GFWM in each generation

one, because its curve becomes more smooth.
Program running time is a standard to meas-
ure the efficiency of the algorithm. Parts of pro-

gram running times are shown in Fig. 5.

Project running time/s

Fig. 5 Running time of the program

Fig. 5 shows that the running time of the
program of SFWM was shorter than that of GF-
WM. The average running time of SFWM was e-
qual to 42.9 s, and it was 2. 2 s shorter than that
of GFWM. The shorter the running time is, the
more conductive putting into practice and impro-

ving the dynamics of flight scheduling is.

4 Conclusions

We transformed the minimum time intervals
between two aircrafts landing on the same runway
into those on different runways, then the model
with multi-objections for aircraft landing on
CSPR was proposed. The delay cost of multi-tas-

king flights was punished to weaken the influence

on the next task. Finally, two kinds of penalty
mechanisms were used to deal with multi-objec-
tive functions, and the following conclusions were
summarized from the simulation.

(1) The solution of genetic algorithm is more
outstanding than that of AS.

(2) Genetic algorithm based on SFWM is
more suitable to solve the model than the other
one.

(3) Genetic algorithm has strong conver-
gence, and the program running time is shorter.
So it has a good practical value.

However, some relevant parameters of ge-
netic algorithm are mainly determined through
the experimental simulation. It needs to be stud-

ied further.
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