Oct. 2016

Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 33 No. 5

Compute Unified Device Architecture Implementation of

Euler/Navier-Stokes Solver on Graphics Processing Unit Desktop

Platform for 2-D Compressible Flows

Zhang Jiale, Chen Hongquan*

College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China

(Received 16 December 2015; revised 30 March 2016; accepted 28 April 2016)

Abstract; Personal desktop platform with teraflops peak performance of thousands of cores is realized at the price

of conventional workstations using the programmable graphics processing units (GPUs). A GPU-based parallel

Euler/Navier-Stokes solver is developed for 2-D compressible flows by using NVIDIA's Compute Unified Device

Architecture (CUDA) programming model in CUDA Fortran programming language. The techniques of imple-

mentation of CUDA kernels, double-layered thread hierarchy and variety memory hierarchy are presented to form

the GPU-based algorithm of Euler/Navier-Stokes equations. The resulting parallel solver is validated by a set of

typical test flow cases. The numerical results show that dozens of times speedup relative to a serial CPU imple-

mentation can be achieved using a single GPU desktop platform, which demonstrates that a GPU desktop can serve

as a cost-effective parallel computing platform to accelerate computational fluid dynamics(CFD) simulations sub-

stantially.

Key words: graphics processing unit (GPU); GPU parallel computing; compute unified device architecture (CU-

DA) Fortran; finite volume method(FVM) ; acceleration

CLC number: V211.3 Document code: A

0 Introduction

Developing computing codes with efficient
parallelization is greatly demanded for the real ap-
plications occurred in computational fluid dynam-
ics (CFD) like simulations of flows over aerody-
namic bodies of considering complex three-dimen-
sional configurations. The efficiency of traditional
CFD solvers based on CPU architecture meets the
bottleneck because limited by the clock frequency
and data transmission bandwidth of CPUs'’. In
recent years, a new streaming processors, often
called graphics processing unit (GPU), has be-
come available for compute-intensive parallel
tasks™. The memory bandwidth and floating-
point performances of modern GPUs are orders of

magnitude faster than a standard CPU. And the

Article ID:1005-1120(2016)05-0536-10

growing gap in peak performance, measured in
floating point operations per second (FLOPS) be-
tween GPU and CPU over the last decade, is il-
lustrated by Fig. 1'¥. Currently, NVIDIA GPUs
outperform Intel CPUs on floating point perform-
ance and memory bandwidth, both by a factor of
roughly ten'?.

At the beginning, the GPU's old fixed-func-
tion pipeline did not allow complex operations,
thus using GPUs for general-purpose computation

B As the formation

was a complicated exercise
and development of new efficient programming
model, the genera-purpose computation program-
mers can perform the parallel computation on
GPU, and transfer date between CPU and GPU

more convenient and effective than before.

NVIDIA' s compute unified device architecture

» Corresponding author, E-mail address:hqchenam@nuaa. edu. cn.

How to cite this article: Zhang Jiale, Chen Hongquan. Compute unified device architecture implementation of Euler/Navier-

Stokes Solver on graphics processing unit desktop platform for 2-D compressible flows[J]. Trans. Nanjing Univ. Aero.

Astro. » 2016,33(5) :536-545.
http://dx. doi. org/10. 16356 /j. 1005-1120. 2016. 05. 536

No. 5 Zhang Jiale, et al. Compute Unified Device Architecture Implementation of+-- 537
plicit calculation of ONERA M6 wing. In 2011,
5000, Intel CPU —— NVIDIA GPU 4500 .)]

" Liu, et al.™ acceletated the simulation of large

a 4000

S 3000 sparse linear and nonlinear equations on multiple

=

% 2000t 516 576 648 1062 p?lec.es of GPU. Gu and Xu?O ac.hleved.a real-time

S 1000}42.6 512 55 * g6 187 243 338 liquid payload hydrodynamics simulation method

0
2006 2007 2008 2009 2010 2011 2012 2013

(a) Floating-point performance

350(—e—Intel CPU —e NVIDIA GPU
300
250
200
150
100} 86 51 60

50f 94 12 32 32
0

2006 2007 2008 2009 2010 2011 2012 2013
(b) Memory bandwidth

286
248

Theoretical GB/s

Fig. 1 Floating-point performance and memory band-

width for Intel CPU and NVIDIA GPU [#

(CUDA)"™ is one such model that supports native
high-level programming language on its own line
of GPUs. The programmers can use CUDA C/C
+ -+, CUDA Fortran or other programming lan-
guages in the GPU codes.

High performance parallel computing with
CUDA has already attracted the CFD researchers.
Brandvik and Pullan'"’ completed porting a two-
and three-dimensional Euler code for modeling in-
viscid flow onto GPU in 2008. The resultant sol-
ver ran 30 times faster for a two-dimensional case
and 15 times faster for a three-dimensional case.

. P rewrote

At around the same time, Elsen,et a
part of the Navier-Stokes Stanford University sol-
ver (NSSUS) to model hypersonic flow on GPU.
The performance of their code ranges from 15 to
40 times speedup compared with the original sol-
ver. Molemaker, et al. " developed a multi-grid
method to solve the pressure Poisson equation.
The CUDA implementation of the multi-grid
pressure Poisson solver produced a speedup of 55
times relative to a 2. 2 MHz AMD Opteron pro-
cessor'® . In addition to the finite volume method,
the discontinuous Galerkin (DG) method has also
been implemented on the GPU by Klockner, et
al. " in 2009. Zhang and Han"* developed an im-
plicit data-parallel scheme to solve computational
fluid dynamics problems on GPU platform in
2010, and obtained 28 times speedup for an im-

on GPU using smoothed particle hydrodynamics
(SPH) method in 2013, and obtained a perform-
ance of 12 times speedup of a aerial CPU imple-
mentation. All the past and recent works in writ-
ing CFD solvers on GPU have shown encouraging
results.

In the paper, we focus on the developing of
personal desktop platform with the programmable
graphics processing units of thousands of cores.
The techniques of implementation of CUDA ker-
nels, double-layered thread hierarchy and variety
memory hierarchy are discussed to develop a
GPU-based parallel Euler/Navier-Stokes solver in
CUDA Fortran programming language. A set of
typical test flow cases are selected for both valida-
tion and performance analysis. Dozens of times
speedup (about 38 times upmost for present test
cases) relative to a serial CPU implementation
can be achieved using GPU desktop platform de-

veloped for the present solver.

1 Governing Equations and Numeri-
cal Approach

1.1 Governing equations

The 2-D Navier-Stokes equations governing

compressible fluid flows can be expressed in con-

servative form™'’ as

e J(F.—F, (G, — G,
W IF —F) G —G)

at dx oy 0

where W is the vector of conservative variables. F.
and G, are the convective flux terms; F, and G, the

viscous flux terms. They are defined as

© o @
2 +)
w— "l =" e | ™ @
o v b
ouH ooH
0 0
T Tay
F"” = Tay ’Gﬂ = Ty
UT 3 + (Z’TW + k ﬂ‘ uf»?‘.v + w}:v + k E
dx dy
3

538 Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 33

where p, p, T, E and H denote the density, pres-
sure, temperature, total energy per unit mass,
and total enthalpy per unit mass, respectively. u
and v are the cartesian components of the velocity

vector. For a perfect gas, these quantities satisfy
[J:(}’—l)<‘oE—%p(u2+v2)> 0

and p=pRT (3
The components of the viscous stress tensor z; is

defined as

0 v el Y1t il v O
In these equations, p and k denote the dynamic
viscosity coefficient and thermal conductivity co-
efficient, respectively. For perfect gas, the dy-
namic viscosity coefficient p can be calculated by
the Sutherland formula™?. The thermal conduc-

tivity coefficient & has relationship to 4 as

—_ 7 ppr
k=T R L)

For perfect gas, the ratio of specific heats of fluid
y =1.4, and the Prandtl number Pr =0. 72.

1.2 Numerical approach

Once a mathematical model is defined, we
need a method for approximating the differential
equations by obtaining a system of equations at a
set of discrete elements in space and time. In our
application of fluid dynamics, the finite volume
method (FVM) in cell-centered scheme is adopt-
ed. By divided the flow field into a set of discrete
control volumes, the integral form of the equation
can be applied over each control volume. For con-
trol volume i , the discretization equations is as
follows

AW 1
S (R, R, 8
N o R~ R (8

R.,= > F.;AS; R.,= > F.;AS; (9
j=1 j=1

where the convective flux and viscous flux are de-
fined as

F.=Fn,+Gn,, F,=Fn,+Gn, (10)
where n and AS; denote the edge number and the
area of edge j of the control volume i, respective-
ly.

The convective flux term is evaluated by cen-

tral scheme with artificial dissipation, as

R, =>F. (%) AS, —D, (1D

i=1
where the construction of the artificial dissipative
term is given by

D, => e’ (W, —W,) —

i=1

M ae (VW — VW) (12)
im1

))

where ¢ and ¢ are adaptive coefficients, A =
|U |+ ¢ is spectral radius of the Jacobian matrix,

in which U = un, + wn, is the normal velocity of

the edge., and c:«/m the speed of sound. The
detailed description of the construction of the dis-
sipative term can be found in Ref. [117.

The viscous flux term is evaluated by central

scheme, as

R, =K. (%) AS, (13)

In order to obtain the steady solution, an ex-

i=1

plicit four-stage Runge-Kutta scheme is adopted
for time integration
W§0> :Wu
J At

i —
R(m D
\Q,’

(m) 0)
Wi 7Wi T an

m=1,2,3,4

Wit =wiv
14
where the superscript n and n+1 denote the cur-
rent and the next time level. The coefficient «,,
can be found in Ref. [11]. To accelerate the con-
vergence, At is taken as the local time stept'',
In the case of inviscid flow governed by the
Euler equations, the fluid slips over the solid wall
and there is no flow normal to the surface, that is
V+en=0. And in the case of viscous flow governed
by the Navier-Stokes equations, the relative ve-
locity between the surface and the fluid directly at
the surface is zero, that is u =v =0. In the far
field, the Riemann boundary condition is adopt-
ed, and the details can be found in Ref. [11].

2 Programming Model and GPU Im-

plementation

NVIDIA's CUDA™ is a parallel computing

platform and programming model that leverages

No. 5 Zhang Jiale, et al. Compute Unified Device Architecture Implementation of+-- 539

the powerful compute engine of their GPUs. CU-
DA provides the developers with a software envi-
ronment, an extension to C, Fortran and some
other programming languages., to launch and
computations on

manage massively parallel

GPUs. The reader can refer to the CUDA pro-
gramming guide for more details™. In the sec-
tion, we summarize the GPU hardware architec-
ture and the programming model with CUDA
Fortran. Hereinafter, we use the term "host” to
refer to CPU and the term "device” to refer to
GPU.

2.1 GPU architecture

GPU is specialized for compute-intensive,
highly parallel computation, and designed such
that more transistors are devoted to data process-
ing rather than data caching and flow control in

CPU, as schematically illustrated by Fig. 2.

Core Core
Control
Core Core
Cache
Memory Memory
(a) CPU (b) GPU

Fig. 2 Different architecture of CPU and GPU

GPU is a set of stream multiprocessors,
which is an extension of single instruction multi-
ple data(SIMD) paradigm architecture. This de-
sign architecture, as the name suggests, makes
CUDA optimal for performing a single instruction
in parallel on different sets of data on NVIDIA
GPUs. A full Kepler GK110 (the latest genera-
tion GPU architecture) is composed of fifteen
streaming multiprocessors (SM) and six 64-bit
memory controllers. As shown in Fig. 3(a), each
SM contains a collection of processing cores (192
in Kepler architecture) , shared memory, Register
File, L1 cache memory, read-only data cache, L2
cache memory, Warp scheduler, and other pro-
cessing or control units. FEach green border
square represents a CUDA core which is then

mapped to a thread by the runtime system. Clos-

er to the core, the local registers allow fast ALU
operations. The shared memory which is also
closer to the processors will be used to store data
shared by all the cores of a SM. The global mem-
ory is used to store the main computing data.
And different kinds of cache, including L1 cache,
read-only data cache and 1.2 cache, are used to
provide efficient, high speed data access of global
memory by processors. Depending on the GPU
architecture, a wide variety of combinations of
number of

cache memory, global memory,

streaming multiprocessors, and thread count are
available. CUDA-enabled GPUs with the Kepler
architecture are powerful processors that contain
thousands of cores which are able of converting a
simple computer into a high-performance comput-

er.
2.2 Programming model

In the CUDA programming model, the par-
allel code executed on GPU is called the kernel.
Before executing a kernel, the processing data
must be transferred to memory on GPU. Next,
CPU initiates kernel execution on GPU. After the
kernel is completed executed, CPU retrieves the
processed data from GPU. This process is illus-
trated in Fig. 4.

The kernel is launched from the host side
(CPU), and it is organized to a thread grid, as il-
lustrated in Fig. 3 (b). Each grid contains a set of
blocks, and each block contains a set of threads.
The number of threads per block and the grid size
(number of blocks) need to be defined before
launching the kernel. All the threads from a spe-
cific block have to execute on the same SMX,
they can access to the same shared memory and
can be synchronized. On the other hand, threads
from different blocks cannot synchronize and can
exchange data only through the global memory.

CUDA Fortran API is an extension to the
Fortran programming language. It provides func-
tions and keywords to manage the computations
on GPU. The reader can refer to Ref. [12] for
more details. In CUDA Fortran API, the qualifi-

ers attributes Chost) , attributes (global) and at-

540 Transactions of Nanjing University of Aeronautics and Astronautics Vol. 33
2
Kepler GPU CPU
| SM15 |
1 3 GPU
| SM2 Host memory 4 GPU memory 3 processing
SM1 cores
[Warp scheduler |
1:Copy data from host(CPU) to device(GPU)
[64 kB shared memory |

[Registelr file(65[536 X 32-bit) |

i1 |

|Core | |Core | |Core | lCoreI | |

I

| L1 cadhe |

| Read-only data cache |

!

| L2 cache |

DRAM

(a) Kepler GPU hardware architecture

Host Device

Grid 1

| Block 1 | I Block 2| | Block 3 | I Block 4|

Kernel 1|-—>

[Block 5| | Block 6] | Block 7]| |

Remeofe [] [[
i B 1 e o | o
Block 6 _‘

Thread 1 [Thread 2 |Thread 3 |Thread 4 | Thread 5
Thread 6 |Thread 7 | Thread 8 | Thread 9 [Thread 10|
[Thread 11|Thread 12{Thread 13[Thread 14{Thread 15
[Thread 16|Thread 17|Thread 18|Thread 19| .-

I1
(b) CUDA thread organization

Fig. 3 Kepler GPU hardware architecture and CUDA

thread organization

tributes (device) specify whether CPU or GPU
should execute and call the qualified subroutine or
function. The qualifiers device, shared and con-
stant are introduced to define the type of memory
a variable should use, and the function CUDA-
Malloc (), CUDAMemcpy () and CUDAFree ()
are used to allocate memory on GPU, copy data
between CPU memory and device memory, and

free memory on GPU, respectively.

2:CPU initiated kernel execution on GPU
3: When kernel ID executing, data read/write in GPU
memory
4 : After executed,data copy bake to CPU memory
Fig. 4 CUDA process flow

In addition, the kernel is launched by specif-
ying the size of the grid (number of blocks) and
the size of the block (number of threads per
block) using the flowing prototype: kernel func-
tion<< < gridSize, blockSize ™ >> (). The
function syncthreads() is used inside a kernel to
synchronize all the threads of a same block, and
the function CUDADeviceSynchronize () is used
inside a host function to synchronize the host

(CPU) and device(GPU).
2.3 CUDA implementation

Explicit Runge-Kutta scheme is selected for
present CUDA implementation. Since the algo-
rithm is explicit in both space and time, threads
can run independently of each other for a majority
of the time-step. This ensures the thread proces-
sors are fully used and none is idle. There are on-
ly a few thread synchronization must occurred,
such as after updating the flow variables in grid
elements, or when judging the convergence. In
Additional, the algorithm is designed in unstruc-
tured model, that suitable for both structured and
unstructured grid. Because of that, the grid cells
are arranged into one dimensional form, and the
size of the thread block and thread grid are both
in one-dimensional form, as shown in Fig. 5.
Each thread corresponds to a grid element, and
takes charge of the computation of the specified
element. Every n (thread number per block)
counts of threads are combined into a thread
block, and the size of thread grid is defined to
m=(N-+n—1)/n. Thus, all the thread counts is

m % n, a little larger than the element count nN

No. 5 Zhang Jiale, et al. Compute Unified Device Architecture Implementation of+-- 541

(number of elements), and the threads can cover

all the element that needing be solved.

Grid elements CUDA threads
Element 1 Thread 1
Element 2 Thread 2
Block 1
Element n Thread n
Element n+1 Thread n+1
Element n+2 Thread n+2
Block 2
Element 2n Thread 2n
Element N Thread N
block m

Fig. 5 1-D permutation and correspondence between grid

elements and GPU threads

Listing 1 shows the simplified host side code
of the time iteration procedure. In the code snip-
pet, two nested loops are composed. The outer
loop is used for advancing the solution in time,
and the inner loop is used for four-stage Runge-
Kutta iteration. As shown in Listing 1, almost all
of the computing tasks are composed into several
kernel functions that could run on the device
(GPU), and the host (CPU) is just used to or-
ganize and control the computational flow. The
memory allocation of the arrays on the device is
only one before starting the time stepping.

Listing 2 shows the device code that compute
the primitive flow variables by the conserved flow
variables. In the beginning, the qualifier "attrib-
utes(global)” is used to define kernel primvar as
a kernel subroutine. The qualifier "device” in vari-
able define line is used to express the val consvar
and val_primvar are GPU arrays, and the qualifi-
er "value” is used to express the constant val _
nElem is a variable that define in host and used in
kernel. The code in line 10 is used to obtain the
thread ID, and the "if” structure in line 12 is used
to limit the thread ID in case computing beyond

the upper bound.

OUTER LOOP: do ilter = 1,nlterNeed
call kernel_primvar<<<Z<m,n>>>()
call kernel_deltaTime<{<<m,n>>>()

call kernel artificalDissipation<.<_<m,n>"> ">
)
call kernel_calResidual_conv<<m,n>>>()
call kernel_calResidual_vise<Z<<<m,n>>>(0)
call kernel_residualSmooth<<Z<<m,n>>>()
10 call kernel_updConsvar<.<_<m,n>>>()

1
2
3
1
5 Inner loop: doj = 1,4
6
(
7
8
9

11 istat = cudaDeviceSynchronize()
12 enddo
13

14 call kernel_convergenceJudgement()

15 enddo

Listing 1 Simplified host side code of time iteration proce-

dure

1 attributes (global) subroutine kernel _ primvar (cons-
var, primvar, nElem)

2 real,device: : consvar(4,nElem)

3 real,device; ; primvar(4,nElem)
4

integer.value: : nElem

ol

integer:: 1

real:: sq_vel

© 0 N O

! get the thread ID
10 i = (blockIldx% x—1) * blockDim % x+ threadIldx %

11
12 if(i <<= val_nElem) then

13 primvar(1l,1) = consvar(1,1)
14 primvar(2,i) = consvar(2,i)/ consvar(1,i)
15 primvar(3,i) = consvar(3,1)/ consvar(1l,i)

16 sq_vel = primvar(2,i) * % 2 + primvar(3,i) x *
2
17 primvar(4,i) = (gamma—1.0) % (consvar(4,1)
— 0.5 % primvar(1,i) % sq_vel)

18 endif

19 endsubroutine

Listing 2 Simplified device side code for computing primi-

tive variables from conservative variables

3 Results and Discussions

Based on the above method and the hardware
architecture, we develop both CPU serial code
and GPU parallel code for solving the 2-D Euler/

542 Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 33

Navier-Stokes equations. All the codes are 32 bit
floating-point precision since GPU we used oper-
ates in single precision. In all our cases, CPU
used is a single core of an Intel Core i5-3450 (3.1
GHz, 6 MB L3 cache, can turbo to 3.5 GHz) and
GPU used is an NVIDIA GTX Titan (2688 scalar
processor cores at 837 MHz, 6 GB Memory).
Both CPU and GPU can represent their current
advanced level of computing.

Firstly, the GPU solver is tested on a tran-
sonic inviscid flow around the RAE2822 airfoil,
and a subsonic viscous flow around the NA-
CA0012 airfoil. The results of these two-dimen-
sional cases are given below and compared with
experimental data and reference results. Then the
resulting GPU solver is tested with a set of cases
for the steady-state flow around the NACAO0012
airfoil on a series of structure grids. The results
and the performance are given and analyzed be-

low.

3.1 Validation of GPU implementation of Euler/

Navier-Stokes solver

Firstly, the GPU solver is tested with a case
of a transonic inviscid flow around the RAE2822
airfoil. This case is run with four stages Runge-
Kutta iteration, with a CFLL number of 5 and im-
plicit residual smoothing method. We assume the
free stream flow conditions with a Mach number
of 0.729 and a 2. 31°angle of attack in this case.
Fig. 6 Ca) shows the contours of Mach number
near the airfoil, and Fig. 6 (b) presents the com-
parison of pressure coefficient data among the ex-
periment data, the reference data and our result.
The reference data NPARC and WIND are pro-
vided by NASA. Our result produces reasonably
accurate results on the leading edge of the airfoil
and a very crisp, clean shock. The position of
shock wave on the upper surface of the airfoil of
our result is a little later than the reference re-
sults, but closer to the experimental data. The
pressure coefficient on the trailing edge of the air-
foil of our result is a little lower than the experi-
mental data and viscous reference results, but

closer to the inviscid results from Fluent and

Ref. [13]. These behaviors are fairly typical of

transonic Euler CFD solutions.

(a) Contours of Mach number

Qur result
Fluent(Inviscid)
REAE]]

Experiment
NPARC

WIND

0.4 0.6 0.8 1.0
X/C
(b) Pressure coefficient distribution

Fig. 6 Euler results for RAE2822 airfoil at Ma.. = 0.
729 and 2. 31° of AoA

Then, the GPU solver is tested with a case
of a subsonic viscous flow around the NACA0012
airfoil. The case is running with same temporal
discretization scheme and same CFL number of
the front case. We assume free stream flow con-
ditions with a Mach number of 0.5, a zero angle
of attack and Reynolds number at 5 000 in this
case. Fig.7(a) shows the contours of Mach num-
ber near the airfoil, and Fig. 7(b) presents the
comparison of pressure coefficient data between

D177 and our result. As we can

the reference data
see in Figs. 7 (a, b), our GPU solver produces
reasonably accurate results in this case of a vis-
cous flow.

The results of our GPU solver for both invis-

cid and viscous flows seem fairly reasonable with

experimental data and refer results.

No. 5 Zhang Jiale, et al. Compute Unified Device Architecture Implementation of+-- 543

(a) Contours of Mach number

Our result
Ref.[14]

0.2 0.4 0.6 0.8
X/C

(b) Pressure coefficient distribution

Fig. 7 Laminar results for NACA0012 airfoil at Ma.. =
0.5, zero of AoA and Re, = 5 000

3.2 Performance results and evaluation

The following computing hardware is utilized
in the paper. A dual-CPU/single-GPU platform
is built with an Intel Core 15-3450 Quad 3.1 GHz
CPU, 16 GB of memory and a NVIDIA GTX Ti-
tan board. The Titan board provides 2 688
streaming processor cores and 6 GB of global de-
vice memory. And the Titan GPU used in the pa-
per can deliver a theoretical peak performance of 4
TFLOPS (Trillion floating-point operations per
second).

To assess the performance of the Euler/
Navier-Stokes solver, we use both the inviscid
and viscous conditions to solve for the steady-
state flows around the NACA0012 airfoil on var-
ying sizes of structure grids. The grid sizes se-
lected for comparison are 192 X 64, 384 X 128,
768X 256, and 1 536 X512. The performance is

measured by dividing the total number of grid ele-

ments by the time for a single iteration of the sol-
ver, yielding the throughput in millions of cell-
step per second.

Using a single CPU core, the performance of
our CFD code is approximately 0. 6 million cell-
steps per second for Euler solver and 0. 45 million
cell-steps per second for NS solver, shown in
Fig. 8 and the third column of Table 1. We can
find that the CPU performance is almost no
growth with the increase of the gird size. That is
because the smallest size of grid have already
made the full use of CPU. On the other hand, the
performance of our GPU implementation is more
efficient, as presented in Fig. 8 and the fourth
column in Table 1. And the computational speed-
up is shown in the fifth column. We can find that
present GPU performs much faster than the im-

plementation of CPU, at a radio of tens.

CPU-Euler = CPU-NS GPU-Euler GPU-NS

0.590

192X 64 1 *4

0.596

384 X 128 [nodss

0.593
0.448

768 X256

[0}
&
17}
=
O

0.604
1536X512 [0
5 10 15
Performance (Million grid cells/s)
Fig. 8 Performance of single CPU and GPU on NA-
CA0012 case with varying grid size

Table 1 Performance of CPU and GPU with different size
of grids
Performance (Million
cell-steps/s)
Model Grid si Speedup
ode srid size
Modellntel g)
. o3 1‘:5011 ¢ NVIDIA GPU/CPU
5-3¢ . .
3.1 GHz GTX Titan
192X 64 0.591 7.03 11.9
384 X128 0.596 14.91 25.0
Euler
768 X256 0.593 22.62 38.1
1 536 X512 0. 604 23.45 38.8
192X 64 0. 441 4. 68 10. 6
384 X128 0. 444 8. 85 19.9
768X 256 0. 448 12.03 26.9
1 536X512 0. 454 13.54 29.9

As shown in Table 1, the speedup of GPU is

544 Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 33

growing with the increase of the grid size. On the
smallest size of grid, the level of parallelism does
not fully utilize the massively parallel GPU archi-
tecture, and performance is only 11. 9 for inviscid
flow case and 10. 4 for laminar flow case above
that of CPU (Table 1). As the mesh size increa-
ses, GPU becomes more efficient and perform
much faster. The speedup grows up to 25. 0,
38.1 and 38. 8 times in the inviscid flow cases and
19.9, 26.9 and 29. 9 times in viscous flow cases
on the increasing grid size of 384 X128, 768 X256
and 1 536 X512, respectively. The speedup num-
bers are impressive for large problem size., be-
cause the arithmetic intensity on the GPU increa-

ses with problem size.

4 Conclusions

The implementation of Euler/Navier-Stokes
equations for 2-D compressible flows on personal
desktop platform with a GPU is presented. With
CUDA
NVIDIA's CUDA programming model is used to

implement the discretized form of the governing

Fortran programming language,

equations. In the numerical solution of 2-D com-
pressible flows, the GPU code has perform doz-
ens of speedup compared with the serial CPU
code (about 38 times upmost for present test ca-
ses). In addition, we observe that the perform-
ance of speedup becomes better with increasing
the size of corresponding computational prob-
lems, which suggests that the GPU code can be

well suited to the complex engineering problems.

Acknowledgements

This work was supported by the National Natural Sci-
ence Foundation of China (No. 11172134); the Funding of
Jiangsu Innovation Program for Graduate Education (No.

CXLX13 132).
References:

[1] PATTERSON D A, HENNESSY J L. Computer ar-
chitecture: A quantitative approach[M]. 4th ed. [S.
I. J: Morgan Kaufmann Publishers Inc, 2007.

[2] NVIDIA. NVIDIA CUDA C programming guide
(version 7. 0) [EB/OL]. (2015-03-05) [2015-09-
01]. http://docs. nvidia. com/cuda/cuda-c-program-

ming-guide/index. html.

[3] OWENS J D, HOUSTON M, LUEBKE D, et al.
GPU computing[J]. Proceedings of the IEEE, 2008,
96(5): 879-899.

[4] BRANDVIK T, PULLAN G. Acceleration of a 3D
Euler solver using commodity graphics hardware:
ATAA 2008-607[R]. 2008.

[5] ELSEN E, LEGRESLEY P, DARVE E. Large cal-
culation of the flow over a hypersonic vehicle using a
GPULJ]. Journal of Computational Physics, 2008,
227(24): 10148-10161.

[6] MOLEMARKER J, COHEN J M, PATEL S, et al.
Low viscosity flow simulations for animation [C]//
Eurographics/ACM SIGGRAPH Symposium on
Computer Animation. Dublin, Ireland: SCA, 2008.
115-116.

[7] KLOCKNER A, WARBURTON T, BRIDGE J, et
al. Nodal discontinuous Galerkin methods on graph-
ics processors[J|. Journal of Computational Physics,
2009, 228(21). 7863-7882.

[8] ZHANG B, HAN]. Parallel computing methods for
CFD using a GPU and implicit scheme[]J]. Acta
Aeronautica et Astronautica Sinica, 2010, 21 (2):
249-256.

[9] LIU S, ZHONG C, CHEN X. Solvers for systems
of large sparse linear and nonlinear equations based
on multi-GPUs[J]. Transactions of Nanjing Univer-
sity of Aeronautics and Astronautics, 2011, 28(3):
300-308.

[10] GU A, XU J. Liquid payload hydrodynamics simula-
tion method for real-time aircraft simulation system
[J]. Journal of Nanjing University of Aeronautics
and Astronautics, 2013, 45(4). 491-496. (in Chi-
nese)

[11] BLAZEK]J. Computational fluid dynamics: Princi-
ples and applications/ M]. 2nd ed. [S.1.]: Elsevier,
2001.

[12] The Portland Group. CUDA Fortran programming
guide and reference, Release 2014 [EB/OL]. (2014-
01-01) [2015-09-017. http://www. pgroup. com/
doc/pgicudaforug. pdf.

[13] AHMED F, AHMED F, AFFAN M, et al. Numeri-
cal solution of 2D Euler equations for the transonic
flow past over NACA0012 and RAE2822 airfoils u-
sing high order accurate Runge-Kutta discontinuous
Galerkin method[C]// Proceeding of 2014 11th In-
ternational Bhurban Conference on Applied Sciences
&. Technology (IBCAST). [S.1.]: IBCAST, 2014
218-213.

No. 5 Zhang Jiale, et al. Compute Unified Device Architecture Implementation of+-- 545

[14] LARA P R M, MORGAN K. A review and compar-
ative study of upwind based schemes for compressible
flow computation. Part III. Multidimensional exten-
sion on unstructured grids[J]. Archives of Computa-
tional Methods in Engineering, 2002, 9 (3). 207-
256.

[15] CARAENI D, FUCHS L. Compact third-order mul-
tidimensional upwind scheme for Navier-Stokes simu-
lations[J]. Theoretical and Computational Fluid Dy-
namics, 2002, 15(6): 373-401.

[16] CHASSAING J C, KHELLADI S, NOGUEIRA X.
Accuracy assessment of a high-order moving least
squares finite volume method for compressible flows
[J]. Computers & Fluid, 2013, 71(2); 41-53.

[17] LIU Xueqiang. The research of N-S equations’ solu-
tion using hybrid grids and multi-grid methods and
its applications [D]. Nanjing: Nanjing University of

Aeronautics and Astronautics, 2001. (in Chinese)

Ms. Zhang Jiale received B. S. degree in flight vehicle de-
sign and engineering from Nanjing University of Aeronau-
tics and Astronautics (NUAA) in 2009, and M. S. degree
in aerodynamics also from NUAA in 2012, respectively.
From 2012 to present, he is a Ph. D. candidate in College
of Aerospace Engineering, Nanjing University of Aeronau-
tics and Astronautics. His research is focused on computa-
tional fluid dynamics and high performance computing.

Prof. Chen Hongquan received B. S. and Ph. D. degrees in
aerodynamics from Nanjing University of Aeronautics and
Astronautics (NUAA) in 1984 and 1990, respectively.
From 1993 to 1994, he was a Postdoctoral Research Fellow
in University of Paris VI and Dassault Aircraft Company,
France. From 1990 to present, he has been a full professor
in College of Aerospace Engineering, Nanjing University of
Aeronautics and Astronautics. His research is focused on
aerodynamics, which includes computational fluid dynam-
ics, computational electromagnetic, genetic algorithm and

multidiscipline design optimization (MDO).

(Executive Editor; Xu Chengting)

