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Abstract: An h-adaptive method is developed for high-order discontinuous Galerkin methods (DGM) to solve the

laminar compressible Navier-Stokes (N-S) equations on unstructured mesh. The vorticity is regarded as the indica-

tor of adaptivity. The elements where the vorticity is larger than a pre-defined upper limit are refined, and those

where the vorticity is smaller than a pre-defined lower limit are coarsened if they have been refined. A high-order

geometric approximation of curved boundaries is adopted to ensure the accuracy. Numerical results indicate that

highly accurate numerical results can be obtained with the adaptive method at relatively low expense.
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0 Introduction

Discontinuous Galerkin (DG) methods!
have received increasing attention in computation-
al fluid dynamics in recent years due to various at-
tractive features. Bassi and Rebay"”' developed a
high-order discontinuous finite element method to
solve the FEuler and Navier-Stokes equations.
Cockburn and Shu® ™ devised a high-order accu-
rate total variation bounded (TVB) Runge-Kutta
discontinuous Galerkin (RKDG) method to simu-
late the nonlinear systems of conservation laws.
More recently, high-order DG methods have been
applied to solve various engineering problems %
on unstructured grid. In fact, DG methods are
similar to finite element methods which can a-
chieve higher-order accuracy via using high-order
polynomial approximation inside elements. More-
over, upwind scheme can be easily implemented
through using appropriate numerical fluxes over
element interfaces. In addition, DG methods lead
to compact space discretization formulae for both

the Euler and the Navier-Stokes (N-S) equations.
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The compactness of the methods has advantages
for parallel implementation.

Despite these advantages, DG methods still
need to be improved in many respects, such as the
shock-capturing and the huge computational ex-
pense caused by the high-order polynomial ap-

[8-15]

proximation . Usually, high discontinuity only
exits locally, e. g. the boundary layer in the flow
field. It will cost high expense to capture them by
enhancing the order of the polynomials or genera-

Adaptive DG

methods are helpful to solve such problems.

ting more dense mesh globally.

Thanks to the simple communication at element
interfaces, elements with "hanging nodes” can be
treated as elements without hanging nodes, which
simplifies local mesh h-refinement. In addition,
the communication at element interfaces allows
different orders between neighboring elements.
Several adaptive DG methods'*?’ have been de-
veloped to improve the accuracy and reduce the
computational expense.

It has been proved that high-order DG meth-

ods are inaccurate at curved solid walls if a piece-
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wise linear approximation of the geometry of the
boundary is employed®™ ., and a higher-order
boundary representation is necessary to ensure the
accuracy of the solution. In the paper, an h-adap-
tive strategy is developed for DG methods to sim-
ulate compressible laminar N-S equations on high-
ly accurate boundary. Because of the high intensi-
ty of the vorticity in boundary layer and shedding
vortex regions, vorticity is used as the sensor of
the h-adaptivity. For the steady case, a Newton
method™" is employed to solve the nonlinear dis-
crete systems and the Block-Gauss Seidel""
method is used to solve the resulting sparse linear
system at each nonlinear iteration. The time inte-
gration of the unsteady case presented below can
be accomplished by means of an explicit method.
The four-stage Runge-Kutta scheme is used in the
paper. Since DG methods are relatively sensitive
to the initial guess, a hierarchical solution proce-

dure is suggested™*'*,

1 Governing Equations

The two-dimensional laminar N-S equations
can be written as follows

du+V « F.(uw)—V « F,(u,Vu)=0 (D
where the conservative variables u and the carte-
sian components f.(u) and g.(u) of the inviscid

(Euler) flux function F.(u) are given by

1Y ou oo
2+P
u= o s f(uw) = o sgu) = fm}
o oUv v+ P
ohu phv

(2)
where p, P and e denote the density, pressure and
the total internal energy per unit mass respective-

ly. u and v are the velocity components. The total
enthalpy per unit mass & is defined as h =e+ L .
0

By assuming that the fluid obeys to the perfect gas
state equation, p can be calculated as P = (y —

_ W)
1)‘0(6 2

specific heats.

) , where y is the ratio of the

The cartesian components f, (u, Vu) and

g.(u, Vu) of the viscous flux function F, (u, Vu)

are given by
fiu, Vuw =
0
2u, +ACu, +v,)
v, +u,
ul 2u, +2Cu, +v,) ]+ v(v, +u,) +y/Pre,
(€D
g.(u,Vu =
0
v, + u,
2v, +Alu, +v,)
ulv, +uy) + v 2v, +a2(u, +v,) ]+ y/Pre,
€]
where 4 is the dynamic viscosity coelficient, Pr
the Prandtl number, and using the Stokes hypoth-
2

esis, A= ——

3
2 DG Discretization

The weak formulation of Eq. (1) can be ob-
tained by multiplying a "test function” v, integra-
ting over the domain (2 and performing integration

by parts

J y %‘dQJrﬂngVu,Vu) . ndo—
o O
a0

J Vve Flu,Vuw)d2=0 VYv (5)
(0]

where F(u,Vu)=F.(u) —F,(u,Vu),dQ is the
boundary of Q.

The integrals over the domain  can be ex-
panded into the sum of integrals over a collection
of non-overlapping triangle elements { E}. The
semi-discrete equations for element E can be writ-
ten as

d

—J v,,u,,dQJrﬂgv,,F(u,, ,Vu, » ndd —
dt)E .

J VV/, 'F(M/,aV“/,)dQ:O VV/, (6)
E

where JE is the boundary of E. In each element,
the functions u, and v,, which are the approxima-

tions to u and v, are given by

Ju,, (x.0) = > U (g (x)
. (7
lv,,(x,t) = D>V, (Dgi (x)

where the expansion coefficients U; and V; denote
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the degrees of freedom of the numerical solution
and the test function in element E, ¢; the n
(shape) basis functions of degree p. Since Eq. (6)
must be satisfied for any element E and function
v, and v, are a linear combination of n shape func-
tions ¢;, Eq. (6) is equivalent to the following
system

J

EP JEgO,u,,dQJrﬂggo,F(u,, s Vu,) » ndd —
IE

j Vo Fluy, Vu)d2 =0 1<i<n(8)
E

Note that, no global continuity is enforced on
u and ¢, , discontinuities are allowed over element
interfaces. Flux terms are not unique at element
interfaces due to the discontinuous function ap-
proximation. The physical normal flux F (u,,

Vu/,) *

flux H(u, s Vu, ,u} ,Vu, ,n),which is calculat-

n in Eq. (8) is replaced by a numerical

ed using the internal u, , external interface state
u; and the normal vector n pointing outward from
E. The numerical flux for the inviscid part of the
equations can be analogous to those employed in
upwind finite volume methods. In the paper, the
LLF scheme is used™" ?/,

In the context of the DG method an auxiliary
variable 8= V u is introduced for the treatment of
the viscous flux. Since DG methods obey to the
hyperbolic systems of conservation laws, the fol-
lowing system of two first-order equations is ob-
tained

0=Yu
{a,u +V eF(uw—V «F(u,Vu) =0
Similar to the treatment of Eq. (1), the weak

9

formulation of the first equation can be obtained

by applying the DG discretization

JFSOIOdQ *SEW% (o, — uy) do —

Jgp,‘Vu,ldQ:O (10)
E

where u, :%(u; +u, ) if it is on the internal in-
terface, and u,, =uy, (u, denotes the boundary da-

ta) if it is on the boundary face. A function r, is

suggested to be introduced™
Lgp,.rm :j ¢ty —w)ndd Ve € IE (11)

0 can be written as the following formulation

Vol. 33
by comparing Egs. (10), (11)
0=u, + >r. (12)
e€dE

where 2 r. represents the effect of interface dis-
e€IE

continuities, and @ can be regarded as a modified
With the modifica-

tion, the DG discretization for the second equation

gradient of the variables u.

of system (9) can be written as

d

ZJESD,M/, dﬂ +

S| i Vs o i o do—

e€IEY ¢

J Ve« Flu.Vu+ D)r.)da=0 A3
E

e€cIE

The numerical flux function H, includes the
inviscid numerical flux H (u;, .u, .n) and the vis-
cous numerical flux function H,. In the paper, H,
is given by the average value of the viscous fluxes
on the interface.

H,(uw, .Vuw, +r. u, . Vu, +r,.n)=

%[Fv(u;,Vu; L)L F G Vup ) ]en

(14)

3 Relaxation

By assembling together all the elemental con-
tributions, the semidiscrete equations can be writ-

ten as

M%J—O—R(U):O (15)

where M is the mass matrix, U the global vector
of the degrees of freedom, and R(U) the residual
vector. Due to the block diagonal structure of M,
the time integration of the unsteady problem pres-
ented below can be accomplished by means of an
explicit method. In the paper, the TVB Runge-
Kutta schemes is used™™.

For steady problems, the Newton method [2*
is used to solve the nonlinear system in Eq. (15)

U™ =U" + wAU" (16)

where w is the under-relaxation factor and AU” is
obtained by solving the following linear system

aR?I
JU

AU" = —R" 17

Note that at each time-step a linear system of

. . JR" .
algebraic equations must be solved and (77U is a
e,



No. 5 Sun Qiang, et al. An h-adaptive Discontinuous Galerkin Method for Laminar Compressible:-- 569

nXn sparse block matrix, where n is the number
of elements. The number of nonzero blocks of a
generic 7 is equals to the number of elements a-
round. Only the nonzero blocks need to be stored
and the linear system (17) at each Newton itera-
tion is solved by means of the Block Gauss-Seidel
method™ .

In order to improve the conditioning of the
linear system (17), a pseudo-time derivative is in-

troduced to original discrete system'*”

. el Un . qul
R =R (7AT” W) (18)
It can be easily observed from Eqgs. (17),
IR’

(18) that

U will become diagonally dominant

with small AT", which makes the Block Gauss-

Seidel method easier to converge.

4 Adaptive Strategy

The entire computation procedure starts from
solving p=0 (p is the order of the basic func-
tions) solution on a very coarse initial grid. As
the order p increases, the mesh needs to be re-
fined in the region where the solution is not
smooth enough. After a number of iteration
steps, the solution in the region mentioned may
become smooth enough. Then, the elements
which have been refined should be coarsened to
reduce the computational expense when the solu-
tion becomes smooth enough.

The vorticity v exists everywhere in the vis-
cous flow. Moreover, due to the great velocity
gradient in the shear layer and the vortices, it can
be huge in these regions. In the paper, the vortic-

ity v is used as the adaptivity sensor.
4.1 Mesh refinement

During the computational process, elements
should be refined when v is larger than the pre-de-
fined upper limit. The " father” element which
needs to be refined is divided into four "child” ele-
ments (See Fig. 1).

It has been proved that the high-order DG
method is inaccurate at curved solid walls if only a

piecewise linear approximation of the boundary is

employed and a higher-order boundary representa-

tion can improve the accuracy of the solution™,

In the paper, the edges on the solid wall of the
boundary elements are represented by a high-or-
der polynomial. The designed high-order (Sixth-
order) curve can represent the real solid wall pre-
cisely (See the dash lines in Fig. 1).

If the boundary elements need to be refined,
the mid-point of the boundary edge is found ac-
cording to the designed curve and the new "child”
elements are generated by connecting it with the
mid-points of the other two edges as shown in
Fig. 1. Two of the new "child” elements are on the
solid wall and their boundary edge will also be re-
presented by the high-order polynomial (See the
dash lines in Fig. 1).

In order to avoid significant gradient in mesh
size between neighboring elements, a smoothing
strategy is employed. If element e in Fig. 2 needs
to be refined, the neighboring element f must al-
so be refined to avoid extreme difference in local
mesh size. In another word, the maximum differ-
ence between refinement times of neighboring ele-
ments is 1. At the same time, a minimum mesh
size hpy, is pre-defined and the refinement will stop
when the element’s genomic size reaches h,; to

avoid the unlimited refinement of the element.

AR AR
DD

Fig. 2 Smoothing strategy

4.2 Mesh coarsening

During the computation, solution in the ele-
ments which have been refined may become
smooth enough. In order to reduce the expense,
these elements can be coarsened. In this case, the

four "child” elements will merge into one "father”
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element where the vorticity v is smaller than the
pre-defined lower limit.

In Fig. 3, the solid lines indicate the elements
which are not on the solid wall. If the "father” ele-
ment is on the solid wall, its boundary edge will
also be represented by a high-order polynomial to
approach the real wall (See the dash lines in
Fig. 3). Like in the refinement, in order to avoid
extreme difference in local mesh size, "child” ele-
ments f;(i=0,1,2,3 ) cannot be merged (See
Fig. 2) if e is coarsened. In another word, mesh
coarsening is the inverse operation of the mesh re-
finement and the max difference between refine-
ment times of neighboring elements is 1. In addi-

tion, the initial element cannot be coarsened.

Fig. 3

Element coarsening

4.3 Data storage structure of grid

To ensure the high program transportability,
the mesh adaptivity works as an independent
module. It only changes the mesh and flow field
solver module is not impacted. In the paper, all
the information of the points, edges and elements
is stored in a list structure. Fig. 4 demonstrates

the refinement of element E.
L[] -~ g W]

[1]2] ~ ] v 1\};]?&;_21:5\7_;3_}

Fig.4 Element increasing

In Fig. 4, E denotes the " father” element
which needs to be refined. The center "child” ele-
ment remains the same index as E, and the other
three around the center ” child” element ( See
Fig.2) range at the end of the list. The same
method is applied to the points and edges. Data
transmission between grid module and flow field
solver module will work well without any influ-

ence from mesh adaptivity.

Similarly, Fig. 5 shows that four "child” ele-
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Fig. 5 Element decreasing

ments merge into a "father” element.

The three "child” elements f; will be merged
to the center "child” element E, and accordingly
the index of the elements after f; should be sub-
tracted 3.

Two flags are attached to each element to in-
dicate the initial index and refinement times dur-
ing the mesh refinement. The mesh coarsening
will work according to these two flags and the re-

lationship between neighboring elements.

5 Numerical Results
5.1 Transonic flow around NACA0012 airfoil

Firstly, the subsonic viscous flow around the
NACA0012 airfoil (Ma=0.5, ¢a=0°,Re=5 000)
is simulated. The initial mesh contains 478 ele-
ments, 260 grid points, and there are 32 grid
points on the solid boundary (See Fig. 6).

Fig. 7 demonstrates the Mach contours and
the vorticity distribution obtained when p=14 on
the initial grid. It is obvious that the solution is
not smooth enough because of the coarse grid in
the boundary layer, which suggests smaller mesh
size in this region to improve the accuracy of the
solution.

In order to improve the accuracy of the solu-
tion and reduce the computational expense, the
local adaptive method introduced above is applied.
Fig. 8(a) shows the final mesh and the vorticity v
distribution, where only the local mesh near the
boundary and in wake region is refined. Fig. 8(b)
shows the final local mesh after adaption com-
pared with the initial mesh.

Fig. 9 depicts the Mach contours obtained
with the adaptive method, where the solution is
much smoother than that obtained on the initial
mesh in Fig. 7. In addition, Fig. 9(b) shows the

J[3]

streamlines and the two symmetrical vortices" in

the wake region are captured well.
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Fig. 10 C, and C; distribution
5.2 Von Karman vortex street

The well-known Von Karman vortex street is
simulated, where Ma=0.1,0=0,Re=150. The
initial mesh is shown in Fig. 11, which contains
1 114 elements and there are only 12 points on the
solid boundary (See Fig. 11).

Fig. 12 demonstrates the Von Karman vortex
street obtained when p=4 on the initial grid. The
solution is not smooth and the resolution of the
vortices is low because the initial mesh is not fine
enough. Unfortunately, shedding vortices are not
captured precisely on the initial coarse mesh even
if the high-order scheme is applied. On the other
hand, the intensity of the vortices is low due to
the big numerical dissipation which is mainly
caused by the large mesh size. It is suggested that
the mesh in these regions should be refined.

Adaptive method introduced above is used in
this case and the final local grid and Von Karman
vortex street are shown in Fig. 13. Due to the

smaller mesh size in the boundary layer region and

15

10 <

-10 -5 0 5 10 15 20 25

x
(a) Global view

(b) Lojcc:al view

Fig. 11 Initial grid
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0 1

X
(a) Local view

Von:=0.3-0.2-0.1 0.0 0.1 0.2 0.3

2 - 4

(b) Global view

Fig. 12 Von Karman vortex street on initial mesh
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Fig. 13 Von Karman vortex street with adaptive method

Fig. 14 Von Karman vortex street with mesh adaptivity

wake region after adaption, the solution is much
smoother compared with that in Fig. 12 and the
intensity of the vortices is enhanced because of the
low dissipation.

In the paper, refinement and coarsening al-
ways work simultaneously. The elements where
the vorticity is greater than the pre-defined upper
limit are refined, and those where the vorticity is
smaller than the pre-defined lower limit are coars-
ened to reduce the computation and storage ex-
pense if they have been refined. Fig. 14 shows the
Von Karman vortex street with the adaptive
method introduced above on several time of one
period.

The Von Karman vortex street is a quasi-
steady case because of its periodicity. The number
of elements in the entire domain should vary in a
small scale for which it is a good case to test the
behavior of the introduced method. Fig. 15 shows
the history of the number of the elements over the
entire domain, where the element number varies
around 2 500.

The evolution of the drag and lift coefficient
in time is shown in Fig. 16 while the period of vor-
tex shedding (Strouhal number) is found to be
St=0.185. In Table 1, the variations of lift coef-
ficient C; and drag coefficient C4 are documented
with amplitudes and mean values and the results
of sixth-order finite difference scheme are also in-
cluded as a reference® for comparison. It is
clearly that the accuracy of lift and drag coefficient
is drastically improved by using the adaptive
method.
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Fig. 16 Variation of lift and drag coefficient

Tab.1 Comparison between lift and drag coefficient

Mesh C, amplitude C4 amplitude C4 mean
Initial mesh 0.48 0.020 1. 21
Adaptivity 0.53 0.027 1. 33
Reference 0.52 0.026 1.32

6 Conclusions

An h-adaptive DG method is developed to
solve the two-dimensional compressible laminar
N-S equations. The vorticity v works well as the
sensor of the mesh adaptivity in the subsonic vis-
cous flow cases. In order to ensure the accuracy of
the solution, a high-order approximation bounda-
ry is designed to approach the real solid wall dur-
ing the h-adaptivity. Numerical results show that
grid refinement and coarsening only work in the
local region and the accuracy of the solution is im-

proved at low expense.

Acknowledgement

This work was supported by the National Natural Sci-
ence Foundation of China (11272152).

References:

[1] REED W H, HILL T R. Triangular mesh methods
for the neutron transport equation: Los Alamos Re-
port LA-UR-73-479[R]. 1973.

[2] LESAINT P, RAVIART P A. On a finite element
method for solving the neutron transport equation[ J].
Mathematical Aspects of Finite Elements in Partial
Differential Equations, 1974(33): 89-123.

[3] BASSI F, REBAY S. A high-order accurate discon-
tinuous finite element method for the numerical solu-
tion of the compressible Navier-Stokes equations[ ] ].

Journal of Computational Physics, 1997, 131 (2):

[4]

[5]

[6]

7]

(8]

(9]

[10]

[11]

[12]

[13]

(14]

[15]

267-279.

BASSI F, REBAY S. High-order accurate discontin-
uous finite element solution of the 2D Euler equations
[J]. Journal of Computational Physics, 1997, 138
(2): 251-285.

BASSI F, REBAY S. A high order discontinuous
Galerkin method for compressible turbulent flows
[M]. [S. 1 ]:Springer Berlin Heidelberg, 2000. 77-
88.

COCKBURN B, SHU C W. The Runge-Kutta dis-
continuous Galerkin method for conservation laws V.
multidimensional systems[]J]. Journal of Computa-
tional Physics, 1998, 141(2); 199-224.
COCKBURN B, SHU C W. The local discontinuous
Galerkin method for time-dependent convection-diffu-
sion systems[ J]. SIAM Journal on Numerical Analy-
sis, 1998, 35(6): 2440-2463.

LU H., BERZINS M, GOODYER C E, et al. Adap-
tive high-order discontinuous Galerkin solution of
elastohydrodynamic lubrication point contact prob-
lems[J]. Advances in Engineering Software, 2012,
45(1) ;. 313-324.

LUH, XUY, GAOY, etal. A CFD-based high-or-
der discontinuous Galerkin solver for three dimension-
al electromagnetic scattering problems[J]. Advances
in Engineering Software, 2015, 83: 1-10.

LU H, SUN Q. A straight forward hp-adaptivity
strategy for shock-capturing with high-order discon-
tinuous Galerkin methods [J]. Advances in Applied
Mathematics and Mechanics, 2014, 6(1): 135-144.,
LU H, SUN Q, QIN W L. 3D numerical solution of
aero-noise with high-order discontinuous Galerkin
method[ J]. Transactions of Nanjing University of
Aeronautics & Astronautics, 2013,30(3): 227-231.
LV Hongqiang, ZHU Guoxiang, SONG Jiangyong,
et al. High-order discontinuous Galerkin solution of
Chinese Journal of
Theoretical and Applied Mechanics, 2011, 43 (3):
621-624. (in Chinese)

linearized Euler equations [ ]].

LV H Q. High-order discontinuous Galerkin solution
of low-Re viscous flows[J]. Modern Physics Letters
B, 2009, 23(3): 309-312.

LVHQ, XUY, GAO Y, et al. A high-order dis-
continuous Galerkin method for the two-dimensional
time-domain Maxwell’ s equations on curved mesh
[J]. Advances in Applied Mathematics & Mechan-
ics, 2016,8(1):104-116.

LV H Q, CAO K, WU L BY, et al. High-order

mesh generation for discontinuous Galerkin methods



Sun Qiang, et al. An h-adaptive Discontinuous Galerkin Method for Laminar Compressible:-- 575

based on elastic deformation[J]. Advances in Applied
Mathematics & Mechanics, 2016,8(4):693-702.

[16] Zhang Laiping, Liu Wei, He Lixin, et al. A class of
discontinuous Galerkin/finite volume hybrid schemes
based on the "static re-construction” and "dynamic re-
construction’[J]. Chinese Journal of Theoretical and
Applied Mechanics, 2010, 42 (6): 1013-1022. (in
Chinese)

[17] YU J, YAN C. An artificial diffusivity discontinuous
Galerkin scheme for discontinuous flows[]J]. Com-
puters & Fluids, 2013, 75: 56-71.

[18] YU Jian, YAN Chao. Study on discontinuous Galer-
kin method for Navier-Stokes equations[ J]. Chinese
Journal of Theoretical and Applied Mechanics, 2010,
42(5) :962-969. (in Chinese)

[19] YANG X, JAMES A J, LOWENGRUB J, et al. An
adaptive coupled level-set/volume-of-fluid interface
capturing method for unstructured triangular grids
[J]. Journal of Computational Physics, 2006, 217
(2) . 364-394.

[20] REMACLE JF, LI X, SHEPHARD M S, et al. An-
isotropic adaptive simulation of transient flows using
discontinuous Galerkin methods [ J |. International
Journal for Numerical Methods in Engineering, 2005,
62(7): 899-923.

[21] XU Yun, YU Xijjun. Adaptive discontinuous Galerkin
methods for hyperbolic conservation laws[ ] ]. Chinese
Journal of Computational Physics, 2009, 26(2):159-
168. (in Chinese)

[22] WU Di, YU Xijun. Adaptive discontinuous Galerkin
method for Euler equations[J]. Chinese Journal of
Computational Physics, 2010, 27 (4); 492-500. (in
Chinese)

[23] HARTMANN R, HOUSTON P. Adaptive discon-
tinuous Galerkin finite element methods for the com-
pressible Euler equations[J]. Journal of Computa-
tional Physics, 2002,183. 508-532.

[24] XIA Yidong, WU Yizhao, LV Honggiang, et al.

Parallel computation of a high-order discontinuous
Galerkin method on unstructured grids [J]. Acta
Aerodynamica Sinica, 2011, 29(5): 537-541. (in Chi-
nese)

[25] HILLEWAERT K, CHEVAUGEON N, GEUZ-
AINE P, et al. Hierarchic multigrid iteration strategy
for the discontinuous Galerkin solution of the steady
Euler equations[J]. International Journal for Numeri-
cal Methods in Fluids, 2006, 51(9/10): 1157-1176.

[26] INOUE O, HATAKEYAMA N. Sound generation
by a two-dimensional circular cylinder in a uniform
flow[ J ]. Journal of Fluid Mechanics, 2002, 471.
285-314.

Mr. Sun Qiang received B. S. degree from College of Aero-
space Engineering, Nanjing University of Aeronautics and
Astronautics in 2011. In September 2011, he became a
post-graduate student at the Aerodynamics Department.
His research is focused on the discontinuous Galerkin meth-
od and mesh adaptivity.

Prof. Lv Hongqiang received B. S. degree from Aerodynam-
ics Department of Nanjing University of Aeronautics and
Astronautics in 1999 and M. S. degree in 2002 from the
same university. He received Ph. D. and Doctor degrees
from University of Leeds in 2006. In the same year, he
joined in College of Aerospace Engineering of Nanjing Uni-
versity of Aeronautics and Astronautics. His current re-
search interest includes the application of the discontinuous
Galerkin methods and numerical simulation of the Maxwell
equations.

Prof. Wu Yizhao received B. S. degree from University of
Science and Technology of China in 1968, and received
M. S. degree in 1981 and Ph. D. degree in 1987 from Nan-
jing Aviation Institute. He is currently a professor and doc-
toral supervisor at College of Aerospace Engineering of
Nanjing University of Aeronautics and Astronautics, and
his research interests are computational fluid dynamics and

multi-grid.

(Executive Editor: Xu Chengting)



576 Transactions of Nanjing University of Aeronautics and Astronautics Vol. 33




