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Abstract; A model of autonomous positioning through associating environment memory information is presented

for unmanned combat aerial vehicle (UCAV). The representation strategy of environment by constructing place

cells is used to produce the memory information., and the landmarks in memory are retrieved through perceiving

and processing the environment. During UCAV's flight, the landmarks are obtained in real-time and are matched

with the landmarks in memory. Then, the idea of ranging positioning is adopted to calculate UCAV's location

based on the corresponding relationship between current obtained landmarks and the memorized landmarks. Simu-

lation shows that the proposed model can realize autonomous positioning in the memorized environment. and the

positioning performance is well when the sensor has a high precision.

Key words: autonomous positioning; environment memory; environment representation; landmarks’ positioning;

feature point

CLC number: TP212.9; V249

0 Introduction

The positioning is the foundation of the navi-
gation process of unmanned combat aerial vehicle
(UCAV). Considering UCAV's intelligence and
autonomous capability, we hope UCAV can real-
ize positioning by itselft). Usually, methods of
vehicle's positioning can be categorized into two
ways when there is no information fusion. One
way is based on the perception of self-motion.
The other way is based on the perception of exter-
nal environment information. The first way will
produce accumulative positioning error when im-

plementing positioning alone™ ™.

For the second
way, the positioning is implemented discretely,
and the positioning results at different moments
are irrelevant. Therefore, the second way can be-
have well when the environment reference is
available during positioning. Besides, human’s
positioning mode also largely depends on the

memory of the environment. If the vehicle can
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know its location by combining the external refer-
ence with the memory, the intelligence and au-
tonomous ability of positioning will be improved
greatly.

Considering the attribute of UCAV, three
basic problems should be solved when the positio-
ning is implemented based on external environ-
ment information. First, which way is used to
describe the environment? Currently, the vision
sensor is the main equipment to perceive the envi-
ronment, and the visual information can be ex-
pressed by images in the application. Therefore,
the description of the environment can be
achieved by describing images®®!. Second, which
way is used to memorize the description and ob-
tain the representation of the environment? For
this issue, we need consider whether the storage
mode is suitable for searching, adding and upda-

ting efficiently. At present, the algorithms with

learning and memorizing ability can be used to
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solve this problem, such as autonomous develop-
ment algorithm!™ and artificial neural network™!,
Third, which way is used to calculate UCAV's
location based on the perceived environment and
the memory? For the above mentioned problems,
we have carried out some studies on the represen-
tation of environment and the positioning of land-
markst!%, but the positioning of UCAV has not
been solved. Therefore, the research is deepened
here, and a model of autonomous positioning
through associating environment memory infor-

mation is presented.

1 Autonomous Positioning Model

The proposed autonomous positioning model
is divided into three parts. The representation of
environment, the positioning of landmarks and
the positioning of UCAV. The representation of
environment is to memorize the perceived envi-
ronment. The positioning of landmarks is to ob-
tain landmarks' location in memory, which is im-
plemented directly by retrieving the environment
representation knowledge. The positioning of
UCAV is to calculate UCAV's location.

The main idea of the model is summarized as
follows: UCAV constructs the inside representa-
tion to memorize the environment. During
UCAV's flight in the memorized environment, it
perceives the environment by vision sensor in re-
al-time, and the corresponding landmarks in the
environment are obtained. Then, the landmarks'
location in sensor coordinate system is calculated
based on the imaging mechanism of vision sensor.
Simultaneously, the landmarks’ location in global
coordinate system is obtained by retrieving the
memory. Therefore, the sensor’ s location in
global coordinate system can be calculated based
on the landmarks’ location in different coordinate
system. At last, some transformations between

the different coordinate systems are implemented

to obtain UCAV's location.
1.1 Environment representation

Through long-term research, animal neurol-

ogists find that rodents’ hippocampus plays a key

role in animal navigation. In hippocampus, the
firing activity of biological place cells exhibits
strong location selectivity. A single place cell can
represent a specific location in the environment,
and the firing activity of the whole place cells can
entire environ-

describe and represent the

L1121 This biological characteristic can be

ment
applied to UCAV's positioning to represent the
environment, and the memory about the environ-
ment can be produced by constructing place cells.
As a result, the environment representation
knowledge is produced.

Fig. 1 shows the process of representing the
environment by constructing place cells. It makes
use of the robustness of feature points extracted
by speeding up robust features (SURF) algo-
[13]

rithm Besides, the memory ability of incre-

mental hierarchical  discriminant regression
(IHDR)'"'"is adopted. The basic process of en-
vironment representation is as follows: First,
SUREF algorithm is used to extract the robust fea-
ture points in the perceived image. Then, the fea-
ture points are regarded as the landmarks, and
the landmarks set are formed by combining land-
marks’ description vectors with landmarks’ loca-
tion. Next, the landmarks set are used as the in-
put of IHDR, and they are clustered into different
states after the processing of IHDR. Finally, a
single state is regarded as a place cell to represent
a location and the environment representation
knowledge is expressed by the whole place cells.
This environment representation model is an-
alyzed in Ref. [9] in detail, which points out that
this model is effective and the produced knowl-
edge can identify the environment by analyzing

the corresponding relation between the real-time

landmarks and the place cells.
1.2 Landmarks’ positioning

UCAV can obtain a number of landmarks
when it flies in the memorized environment. If
current landmarks are associated with some infor-
mation in the environment representation knowl-
edge, the landmarks’' location in memory can be

retrieved directly. Because of the robustness of
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Fig. 1 Process of representing environment by con-

structing place cells

feature points, some landmarks can be described
well even though the image captured by vision
sensors changes along with scaling, rotation and
noise pollution. Therefore, the landmarks’ de-
scription vector is used to retrieve the environ-
ment representation knowledge during land-
marks’ positioning.

Fig. 2 shows the process of landmarks’ posi-
tioning. First, SURF algorithm is used to extract
the feature points in the perceived image, and the
landmark’ s description vector x, is obtained.
Then, x, is used to retrieve the environment rep-
resentation knowledge, and the description vector
x; and the location y, in the memory are obtained
(In the retrieval process, the distance between
landmark’s description vector and the clusters of
IHDR is calculated to search the cluster with
shortest distance. Then x; and y; of the searched
cluster is exported). Finally, x, and x; are puri-
fied by ratio method, and all purified landmarks
are marked as the landmarks that can be posi-
tioned. Simultaneously, the corresponding vy, is
used as the location of landmark i. Through the
above steps, the landmarks’ positioning is fin-
ished. The detail process is analyzed in Ref. [10],
which points out that the positioning accuracy of
landmarks is high in small noise pollution. Here

we do not discuss it in detail.

Perceived image

SURF
Retrieve

Environment representation
knowledge

Landmarks' description
vector x;!

Description vector X; and
the location y,

X, 1
x;
™ Purified by ratio method |

|The purified landmarks' location ¥, |

Fig. 2 Landmarks' positioning process

1.3 UCAV's positioning

Fig. 3 shows the process of UCAV's positio-
ning. The image is perceived by vision sensor
(e. g. , binocular vision system) in real-time, and
the landmarks with 64-dimension description vec-
tors are obtained by extracting feature points.
Then, the landmarks’ description vector is used
to retrieve the environment representation knowl-
edge. As a result, the landmarks’ location in
global coordinate system is obtained, denoted by
(2% s yhis 20 ). Simultaneously, the landmarks'
location in sensor coordinate system is calculated
through the imaging mechanism of vision sensor,
denoted by (a3}, s y}i» 2 ). The core formula of

the imaging mechanism is as follows

Perceived image

SURF
Robust feature points . Environment
(64-dimension Retrieve representation
description vectors) knowledge

Associating | Landmarks' location in
global coordinate
system (X, V> Zn)

Landmarks' location
in sensor coordinate
system (X, V» Zn)

Positioning
calculation

UCAV's location (x7, y2 zJ)

Fig. 3 UCAV's positioning process
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where S is the scale factor and [ u,;, v, | the
landmarks’ location in the image. f, and f, are
the focal length, [uy,v, |T is known as the refer-
ence point, which is the intersection point be-
tween image plane and the optical axis, u, and v,
are the internal parameters of the vision sensor.
Since [u,.: v, ' is obtained by extracting feature
points, (&}, ¥, »2) can be obtained directly by
the sensor.

Then, the idea of ranging positioning is a-
dopted to calculate UCAV's location in global co-
ordinate system based on the (x%,, v .25 ) and
(X3 s Vi s 20 ). The detail is as follows: Let (27,
", 2") be the vision sensor’s location in global co-
ordinate system. Let (z2",y",2") be UCAV's lo-
cation in global coordinate system. Because the
distance between the landmarks and the vision
sensor is fixed, we can obtain

(2! =z, + =)+ (2 — ) =
T:,%I_’_y;;zu +=2% i=1,2,,N (2)
where N is the landmarks’ number. As a result,
the number of nonlinear equations is also N.

Next, the positioning method of Caffery™™ is
used to solve the equations.

Let 2%+ y&+ 2% = r%. Then, vision sen-
sor’ coordinate in the global coordinate system

can be obtained

X" =(A"A) 'A"b (3)
where
e Yoz ™ Yml Lz T T
A Loz — T Vs — Yom2 T3 T Tz

n
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(6)

Usually, the vision sensor is fixed on the ve-
hicle, so the relationship between vision sensor’s
location and UCAV's location can be obtained di-
rectly. Let p% be the vision sensor’s location in
the body coordinate system. Besides, let C} be
the direction cosine matrix from the body coordi-
nate system to global coordinate system. There-
fore, UCAV's location in the global coordinate
system can be obtained

X =X —Cpl, )
where X! = (2%, y",22)".

Through the above process, UCAV's loca-

tion can be calculated when more than three land-

marks are obtained.

2 Results and Analysis

First, the representation of environment and
the positioning of landmarks are analyzed by sim-
ulation. Second, the performance of autonomous
through environment

positioning associating

memory information is discussed.

2.1 Analysis of environment representation and

landmarks’ positioning

(1) Extract feature points in initial perceived
image by SURF algorithm. The initial perceived
image is shown in Fig. 4. Its size is 326 pixel X
400 pixel. The extracted feature points are shown
in Fig. 5. The number of feature points is 656.
Then, construct place cells according to the mod-
el mentioned in Section 1. 1, so the representation
of environment is achieved, and UCAV can mem-
orize the experienced environment. In the simula-
tion, the parameters of IHDR are set as follows:
The dimension of input space is 64. The dimen-
sion of output space is 2. The number of nodes ¢,
is 20. Amnesic parameters ¢,, £, , b and m are set
to 5, 20, 1 and 100, respectively. The detail con-
tent is introduced in Ref. [107].

(2) Initial perceived image is polluted by
Gaussian noise, and the pollution image is regar-
ded as the test image. Gaussian noise’s average is
set to 0, and its variance is divided into 0. 01,
0.03, and 0. 08. Then, the feature points in the

test image are extracted by SURF algorithm to
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Fig. 4 [Initial perceived image

Fig. 5 Feature points in perceived image

obtain the test landmarks. Simultaneously, the
landmarks’ location in the test image is regarded
as the accurate reference location.

(3) The description vector of test landmarks
is used to retrieve the representation information
to obtain the corresponding 2 and ; in memory.

(4) According to the landmarks’ description
vector in test image and the retrieved description
vector in memory, the test landmarks are purified
by ratio method.

(5) The purified landmarks' location is used
as positioning result, and the landmarks’ positio-
ning is finished.

(6) Compute the error between positioning
result and reference location, and compare the er-
ror with the threshold of location error (The set-
ting of location error’s threshold is to evaluate the
excellent or worse of the positioning results. If
the positioning error is lower than location error’s
threshold, the positioning result is considered ex-
act. In the paper, the location error’s threshold is
set to 1. 414). The positioning accuracy rate is
analyzed. The positioning accuracy rate is the ra-
tio that the number of purified landmarks whose

.o . . . 1l
positioning error is lower than location error’ s

threshold relative to the total number of purified
landmarks.

Fig. 6 shows the corresponding relationship
between the positioning result measured by the
proposed model and the reference location ob-
tained by SURF algorithm. In the simulation,
the threshold of ratio method is 0. 6. In Fig. 6,
the reference locations are shown as the points in
the left of the lines, and the positioning results
are shown as the points in the right of the lines.
Simulation validates that the proposed model can

realize the memorizing of perceived environment

and the positioning of the landmarks.

Fig. 6 Corresponding relationship between positioning

result and reference location

2.2 Performance of autonomous positioning
through associating environment memory

information
In this section, we simplify the simulation
process, including: (1) The barycenter of UCAV
is consistent with the origin of sensor coordinate

system; (2) the capture of real-time image and
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the extraction of feature points are elided, and the
randomly produced points in the horizon are re-
garded as the landmarks; (3) during UCAV's
flight, the landmarks’ number that UCAV can
perceive is more than 3, and the perceived land-
marks can be found in the environment represen-
tation knowledge.

Based on the above simplifications, the loca-
tion of UCAV on the horizon is denoted by (a7,
y4), which is calculated by Eq. (3). The flight
height is denoted by 2%, and it is obtained based
on Eq. (2). The flight process in the simulation
includes level flying, climbing and down. The
flight trajectory and the distribution of landmarks
are shown in Fig. 7. The flight speed is 40 m/s.
The total fight time is 175 s. The positioning pe-

riod is set to 1 s.

Fig. 7 Flight trajectory and landmarks

The simulation contents include: (1) The po-
sitioning performance in the different sensor pre-
cision is analyzed at certain location; (2) the posi-
tioning performance in the different landmarks'
number is analyzed at certain location; (3) during
the whole flight process, the positioning result in
different sensor precision is analyzed. Perform-
ance index includes: Positioning error, positio-
ning error’s standard deviation, positioning preci-
sion and positioning precision’ s standard devia-
tion. They are defined as follows:

Positioning error

J Ay = — i
fyz =y — (8

n

n o __ A11
Az, =z, — 2,

where (27,y",27) is UCAV's location in global
coordinate system, and it is obtained by the pro-
posed model. (x},y.,2!) is the true location of
UCAYV in global coordinate system.

.. . ! . .
Positioning error s standard deviation

osx =V E{[AX — E(AX) J*}

ooy =V E{[AY —E(AY) ]} (9

oaz =VE{[AZ—E(AZ)]*}
where
AX = {Axl s Az s+ s AXn

AY = {Ayin s Ay s s Ayin ) (10)
AZ = (A2l s Azl s s Az

Positioning precision

Ar =/ Azl + AyLE 4 Az (1D
Positioning precision’s standard deviation
ose =VE{[AR — E(AR) J*} (12)
where AR={Ar; sAr, s Arn ).

2.2.1
Let (300,2 000,105) be the true location of

Positioning result at certain location

UCAYV. Forty landmarks are used to estimate
UCAV's location. Assume that the landmarks’
location error in global coordinate system satisfies
Gaussian distribution. Its mean is 0, and its
standard deviation is 5. Fig. 8 shows the positio-
ning results of one thousand experiments. Simu-
lation results show that: (1) The proposed model
can realize UCAV's positioning, and the positio-
ning error in each direction is similar to Gaussian
distribution. (2) The error in height direction is
larger than that in horizon direction, because this
positioning calculation is based on the invariabili-
ty of the distance between the landmarks and sen-
sor. This distance is mainly decided by the flight
altitude. Therefore, when the landmarks' loca-
tion is wrong, it will directly lead to the error of
distance between the landmarks and the sensor,
which ultimately affects UCAV's positioning re-
sult, especially for the height value. (3) In order
to improve the positioning performance, other
equipment can be used to decrease the height er-

ror, e. g. , the radio altimeter.
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Fig. 8 Positioning error of UCAV and its distribution in different directions

Fig. 9 shows the positioning precision when
the standard deviation of landmarks’ location er-
ror is changed. Simulation results show that the
value of positioning precision increases when the
standard deviation of landmark’s location error
increases. Conversely, if the standard deviation
of landmarks’ location error is small, that is to

say, the sensor's performance is better, the posi-

tioning performance of UCAV will be promoted.
For example, when the standard deviation of
landmarks’ location error is lower than 5 m, the
average of UCAV' s positioning precision is lower
than 10 m, and the standard deviation of positio-
ning precision is lower than 5 m,

Next, the positioning precision of UCAV is

analyzed when the number of landmarks is adjus-
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Fig. 9 Positioning precision with change of standard de-
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viation of landmarks’ location error

ted. The true location of UCAV is also (300,
2 000, 105). The landmarks’ location error in
sensor coordinate system satisfies Gaussian distri-
bution. Its mean is 0, and its standard deviation
is 10. Landmarks’ number changes from 3 to
100. At each condition, one thousand experi-
ments are implemented, and their average is used
as the final result. Fig. 10 shows the simulation
result. The conclusions can be summarized as:
(1) When the selected landmarks is less than 10,
the value of positioning precision is big, and its
descending trend is evident with the increase of
the landmarks’ number. (2) The positioning per-
formance is better when the landmarks’ number
is from 20 to 40. (3) The change of landmarks’
number has no obvious influence on the improve-

ment of positioning performance when the land-

marks’ number is more than 40. Therefore, the
landmarks’ number from 20 to 40 is appropriate
when the positioning precision and computational

cost are considered.

45 . - . .
—+— Average of positioning precision:
40 |-\, -~ Standard-deviation of positioning precision-

35
30
25
20
15

UCAV's positioning precision / m

10

0 20 40 60 80 100
Landmarks' number

Fig. 10 Positioning performance in different landmarks'

number

2.2.2 Positioning results during flight

In the simulation, the landmarks’ location
error in sensor coordinate system satisfies Gaussi-
an distribution. Its mean is 0, and its standard
deviation is divided into 2, 5, 7, 10, and 15.
During UCAV's positioning, forty landmarks are
selected to calculate UCAV's location. In the
same condition, ten experiments are carried out
and the average of ten experiments is used as the
final result. Fig. 11 shows the positioning results
during the flight when the standard deviation
of landmarks' location error is 5 m. Table 1 pres-
ents the detail positioning results at different
landmarks’ location error. Simulation results
show that: (1) UCAV can achieve autonomous
positioning and its positioning performance is en-
hanced with the improvement of the sensor's pre-
cision. (2) The error in horizon direction is
small, but the error in height direction is big.
should be
adopted to modify the error in height direction.
(3) The

UCAV's positioning, and the positioning per-

Therefore, some other approaches
important role in

sensor plays an

formance can be enhanced with development of

sensor technology.
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Table 1 Positioning performance at different landmarks’

location error

Standard deviation
of landmarks’

) 2 5 7 10 15
location
error/m
Positioning Ayerage —0.04 —0.06 0.04 0.02 0.23
error in
N tandard
direction Standard o)) a0y 6g2
X/m  deviation
Positioning Average 0,02 0.04  0.09 —0.14 —0. 21
error in
ot tandard
direction Standard ) )\ ) w00 wr 5 48 800
Y/m  deviation

Positioning Ayerage —0.57 —2.18 —3.12 —4.77 —3. 54
error in

direction Standard

.. 5.28 10.60 13.36 16.14 21.35
Z/m  deviation
Positioning Average 3.06 7.64 10.29 13.90 17.70
precision/ Standard
m AT 379 8,57 9.89 12.11 12.67

deviation

3 Conclusions

An autonomous positioning model is presen-
ted based on the representation of environment
and the retrieval of landmarks in memory. Simu-
lation results show that the proposed model is
feasible. UCAV can realize autonomous positio-
ning in memorized environment. The average of
UCAV's positioning precision is lower than 10 m
when the standard deviation of landmarks’ loca-
tion error is lower than 5 m. Besides, considering
UCAV's positioning precision and the computa-
tional cost, the landmarks’ number from 20 to 40
is appropriate for providing a good positioning
reference. However, in the paper, we mainly dis-
cuss the realization and the positioning error of
the proposed model, which is lack of the analysis
of the computational cost and real-time perform-
Therefore,
deepened.

ance. this research need be further

Acknowledgement

This work was supported by the National Natural Sci-
ence Foundation of China (No. 61273048).

References:

[1] WU Dewei, TAI Nengjian, QI Junyi. A new re-

search progress of UCAV intelligent navigation based

(2]

(3]

(4]

[5]

[6]

7]

(8]

[9]

[10]

[11]

on cognitive theory[ J]. Journal of Air Force Engi-
neering University (Natural Science Edition), 2011,
12(4):52-57. (in Chinese)

LUO Yuan, FU Youli, CHENG Tiefeng. Simulta-
neous localization and mapping implementation based
on the improved Rao-Blackwellized particle filter[ J].
Control Theory & Applications, 2015, 32(2):267-
272. (in Chinese)

JARADAT M A, ABDEL-HAFEZ M F, SAADED-
DIN K, et al. Intelligent fault detection and fusion
for INS/GPS navigation system [ C]// 9th Interna-
tional Symposium on Mechatronics and Its Applica-
tions. Amman, Jordan:[s.n. ], 2013:1-5.

XIONG Zhi, PAN Jialiang. LIN Aijun, et al. SINS/
GPS/CNS integrated navigation system federal PF
algorithm in launch inertial coordinate system/[]].
Journal of Nanjing University of Aeronautics & As-
tronautics, 2015, 47(3):319-323. (in Chinese)

XU Xiandong, HONG Bingrong, GUAN Yi, et al.
A comparison of several feature points methods used
in mobile robot visual navigation[ J]. Journal of Hua-
zhong University of Science and Technology (Natural
Science Edition), 2011, 39(11): 200-203. (in Chi-
nese)

BAO J T, SONG A G. TANG H R. et al. Naviga-
tion method for reconnaissance robot based on vision
object tracking[J]. Journal of Southeast University
(Natural Science Edition), 2012,42(3):399-405.
WENG J, HWANG W S. Incremental hierarchical
discriminant regression [ ] ]. IEEE Transactions on
Neural Networks. 2007,18(2) :397-415.

WANG Y H. CHEN S D, HAN Z P, et al. Model-
ing and algorithm application of weapon assignment
system[ J]. Transactions of Nanjing University of
Aeronautics and Astronautics, 2014,31(6):693-700.
ZHOU Yang, WU Dewei, TAI Nengjian, et al. A
method of constructing place cells in UCAV terrain
space environment perception [ J]. Journal of Air
Force Engineering University (Natural Science Edi-
tion), 2014,15(2):62-66. (in Chinese)

WU Dewei, ZHOU Yang, DU Jia, et al. Method to
select and position landmark in UCAV environment
perception[ J|. Systems Engineering and Electronics.,
2014,36(10) :2048-2052. (in Chinese)

ARLEO A, SMERALDI F, GERSTNER W. Cogni-
tive navigation based on nonuniform gabor space
sampling, unsupervised growing networks, and rein-
forcement learning [J]. IEEE Transactions on Neu-

ral Networks, 2004,15(3):639-652.



594 Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 33

[12] GIOVANNANGELI C, GAUSSIER P, DESILLES
G. Robust mapless outdoor vision-based navigation
[C]//2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Beijing, China:
IEEE.2006:3293-3230.

[13] BAY H, TUVTELLARS T, GOOL L V. SURF;
Speeded up robust feature[ C]//9th European Con-
ference on Computer Vision. Graz, Austria: Univer-
sity of Liubljanna, 2006:404-417.

[14] WENG J, HWANG W S. Incremental hierarchical
discriminant regression for online image classification
[C]//6th International Conference on Document A-
nalysis and Recognition. Seattle, USA:IEEE, 2001
476-480.

[15] CAFFERY J. Wireless location in CDMA cellular ra-
dio systems[ M]. Boston: Kluwer Academic Publish-
eers, 1999.

Ms. Du Jia received M. S. degree from Xi’an Communica-
tions Institute in 2008. She is currently a Ph. D. candidate
in Air Force Engineering University. Her research is fo-
cused on the intelligent and autonomous navigation of air-
craft.

Prof. Wu Dewei received M. S. degree from Air Force En-
gineering University in 2000, and Ph. D. degree from
Northwestern Polytechnical University in 2005. He is cur-
rently a full professor of Air Force Engineering University.
His research is focused on the theory, technology and ap-
plication of aircraft’s navigation.

Mr. Zhou Yang received M. S. degree from Air Force Engi-
neering University in 2014. He is currently a Ph. D. candi-
date in Air Force Engineering University. His research is
focused on the intelligent and autonomous navigation of air-

craft.

(Executive Editor; Xu Chengting)



Du Jia, et al. Model of Autonomous Positioning Through Associating Environment Memory:--*

l

[$21




