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Abstract: A surface mesh movement algorithm. combining surface mesh mapping with Delaunay graph mapping,
is proposed for surface mesh movement involving complex intersections, like wing/pylon intersections. First, sur-
face mesh mapping is adopted for the movement of intersecting lines along the spanwise direction and the wing sur-
face mesh, and then Delaunay graph mapping is utilized for the deformation of the pylon surface mesh, guarantee-
ing consistent and smooth surface meshes. Furthermore, the corresponding surface sensitivity procedure is imple-
mented for accurate and efficient calculation of the surface sensitivities. The proposed surface mesh movement al-
gorithm and the surface sensitivity procedure are integrated into a discrete adjoint-based optimization framework to
optimize the nacelle position on the DLR-F6 wing-body-nacelle-pylon configuration for drag minimization. The re-

sults demonstrate that the strong shock on the initial pylon surface is nearly eliminated and the optimal nacelle po-

sition can be obtained within less than ten iterations.
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0 Introduction

The wing-body-nacelle-pylon ( WBNP) con-
figuration has been widely used in current trans-
port aircrafts, thanks to its advantages such as
easy access to service and wing bending relief.
However, the interactions between wing/fuse-
lage/nacelle/pylon may cause large interference
drag, and in turn poor aerodynamic performance.
In order to reduce the interference drag, compu-
tational fluid dynamics (CFD) has been coupled
with numerical optimization techniques to deter-
mine the optimal shape and/or position of each

[ conducted

component. For example, Koc et al.
aerodynamic design optimization for the DLR-F6
WBNP configuration, utilizing a three-dimension-
al unstructured Euler solver and its discrete ad-

joint code. Saitoh et al. " used a similar approach
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for multi-point design of WBNP configuration,
reducing the drag coefficients at both the low-lift
condition and the cruise condition. Li et al. "’ de-
veloped an arbitrary space-shape free form de-
formation(FFD) method for the integral parame-
terization of nacelle-pylon geometry and optimized
the vertical and horizontal locations of the nacelle
on the DLR-F6 WBNP configuration. These and
others’ contributions'® indicate that CFD based
numerical optimization methods can improve the
design of such a configuration.

Although the optimizations of the vertical
and the horizontal (streamwise) locations of a na-
celle are not uncommon, the optimization of the
spanwise location (as shown in Fig. 1) is still a
challenge. In fact, when the nacelle is moved
along the spanwise direction, the pylon should be

moved accordingly along the spanwise direction,

How to cite this article: Gao Yisheng, Wu Yizhao, Xia Jian, et al. A surface mesh movement algorithm for aerodynamic op-

timization of the nacelle position on wing-body-nacelle-pylon configuration[ J]. Trans. Nanjing Univ. Aero. Astro. ., 2016,

33(6) :657-669.
http://dx. doi. org/10. 16356 /j. 1005-1120. 2016. 06. 657



658 Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 33

leading to the movement of wing/pylon intersec-
ting lines along the wing surface. In this case, a
naive application of the commonly used FFD
method' to the movement of the nacelle/pylon
may result in nonsmooth or inconsistent wing-na-
celle-pylon surface meshes. Although CAD-based
tools may be utilized to address the issue, cou-
pling sophisticated CAD systems with optimiza-
tion system is not a trivial task. Furthermore,
the current proprietary CAD systems seldom pro-
vide accurate and efficient surface sensitivity anal-
ysis, which is indispensable for gradient-based
optimization. On the other hand, some in-house
CAD-based tools have been developed for gradi-
ent-based shape optimization™®®’, but the capabili-

ties to handle complex intersections are not clear.

Horizontal location

Spanwise location

Vertical location

Fig. 1 Representation of the nacelle location

In this paper, an alternative algorithm for
the surface mesh movement involving complex in-
tersections without CAD intervention is pro-
posed. The algorithm is based on surface mesh
mapping in conjunction with Delaunay graph
mapping. First, surface mesh mapping''®! is in-
troduced for the movement of wing/pylon inter-
sections along the spanwise direction and the wing
surface mesh. As the nacelle is moved along the
spanwise direction, this approach ensures that the
wing/pylon intersecting lines are moved accord-
ingly and lie on the wing surface properly, pre-
serving consistency with the underlying wing ge-
ometry during the movement of the nacelle. After
the determination of the new nacelle location and
the new wing/pylon intersection location, Delau-

nay graph mapping''" is applied for the surface

mesh deformation of the pylon., guaranteeing the

smoothness of the deformed surface mesh. Note
that the optimization of the pylon geometry itself
is not accounted for in this paper. Thus, the py-
lon is deformed according to the movement of the
nacelle/pylon and wing/pylon intersections.

To develop a gradient-based aerodynamic op-
timization framework for the WBNP configura-
tion, a procedure for the calculation of surface
sensitivities is also implemented. The codes of
computing the surface sensitivities of the wing
points with respect to the spanwise variation are
generated by the forward mode of automatic dif-
ferentiation (AD)"*'. The proposed surface mesh
movement approach and the surface sensitivity
procedure are integrated into a discrete adjoint-
based optimization framework"®, with a linear
elasticity-based volume mesh deformation ap-
proach, a parallel full implicit flow solver for the
Euler equations, a duality-preserving discrete ad-
joint solver and a gradient-based optimization al-
gorithm. The effectiveness and efficiency of the
proposed optimization framework are demonstra-
ted through the optimization of the nacelle posi-

tion on the DLR-F6 WBNP configuration for drag

minimization.

1 Surface Mesh Movement Algo-

rithm
1.1 Surface mesh mapping

Given the vertical and horizontal locations of
the nacelle as design variables, only the deforma-
tions of the nacelle and pylon surface meshes are
required, without the movement of the wing/py-
lon intersections. However, if the spanwise loca-
tion of the nacelle is also designated as a design
variable, the translation of the nacelle along the
spanwise direction requires the consistent transla-
tion of the pylon, leading to the problem of the
determination of the new wing/pylon intersection
location on the wing surface. It is not an easy
task due to the requirement of preserving the new
wing/pylon intersections lying on the wing sur-
face and the smoothness of the deformed wing-na-

celle-pylon surface meshes. Murayama et al. !
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proposed a simple and robust surface mesh map-
ping for surface mesh movement in juncture re-
gions, and demonstrated its capability by the
change of the position and deflection angle of the
horizontal tail wing. Therefore, it is applied here
to guide the movement of the wing surface mesh
as the change of the wing/pylon intersections in
the optimization process.

This method includes the following steps:

(1) Create an appropriate structured back-
ground mesh for the clean wing geometry, cover-
ing the wing/pylon intersections, as shown in
Fig. 2. The clean wing geometry is usually al-
ready available or can be generated by using "unt-
rim” operation in CAD systems. The background
mesh can be generated for part of the clean wing
surface, rather than the complete wing surface.
This background mesh will be used for the map-
ping between physical space and parameter do-
main, as shown in Fig. 3, where £ and 7 represent
parametric coordinates in parameter domain.

(2) Determine the mapping (parametric co-
ordinates) of vertices on the wing surface mesh
covered by the background mesh. Consider any

vertex P on the surface mesh, as shown in Fig. 4.

Fig. 2 The clean wing geometry and the background mesh

Donor element

Physical space

s

1 .
g

Fig. 3 Parameter domain of the background mesh

The Cartesian coordinates of the vertex P can be
given by
1
xp= > D7, (D
=1
where xp represents the Cartesian coordinates of
the vertex P, r; the Cartesian coordinates of the
vertex of the donor element where the vertex P is
located, and @, the interpolation weights calculat-
ed by the standard shape function for four-node

quadrilateral

@1:1*51 I—mn

2 2
o _LlT&1—7
2 2
1+& 1+7
@3:72& 5 (2)

@:1—51+m
! 2 2

El :2(519*71.))*1
771 :2(77[>_le) _1

where &, and np are the parametric coordinates of
the vertex P in parameter domain, & and 7 the lo-
cal parametric coordinates of the vertex P, ip and
jp the donor element indexes of the vertex P. In

order to obtain the parametric coordinates & and

4

T aP(E,7T)

(G J)

Fig. 4 Mapping of the vertex P



660 Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 33

7r » the donor element on the background mesh is
first identified. Rather than the neighbor-to-
neighbor jump-search algorithm used in Muray-

L), a simple direct search is ap-

ama’s method
plied here. In the direct search, each quadrilateral
element on the background mesh is split into two
triangular elements, and the projected point is
calculated to find the donor element'. Although
it is not as efficient as the neighbor-to-neighbor
jump-search algorithm, the direct search is car-
ried out only once. After the donor element is i-
dentified, Newton-Raphson iteration is adopted to

151 The conver-

obtain the parametric coordinates
gence to machine precision can be achieved within
5—6 iterations. Once the parametric coordinates
are obtained, the part of the wing surface mesh in
physical space, as shown in Fig. 5, is mapped on-
to a 2D mesh in parameter domain which is shown

in Fig. 6.

Fig. 5 The part of the wing surface mesh in physical

space for mapping

S

Fig. 6 Mapped mesh in parameter domain

(3) According to the specified movement of
the nacelle and the pylon along spanwise direc-
tion, move the wing/pylon intersections in pa-
rameter domain. Since the movement of the

wing/pylon intersections in parameter domain is

unknown, a special Newton-Raphson iteration is
used to decide the movement, as depicted by

pseudocode in Fig. 7.

Algorithm 1 Newton-Raphson iteration for determining translation in
the 77 direction

Input:
y,—local parametric coorinates
d;—translation in the y direction
iy, Jy—initial donor element index
&, N;—initial parametric coordinates
y—coordinates of background mesh
Output:
d,—translation in the 77 direction
1:procedure Newton-Raphson(y,d,.i, jo & oMo Yy dn)
20 §<2(&i)-1.0 D> local parametric coordinates
3. 1,<2(M-i)-1.0
4: i<,
55 <
6: &<§
7. N1,
8: for m=1,miter do
9: I VuslisJ)
10: Yy Vue(itl, )
Iy (tl, 1)
122yl jtl)
13y —3(1=H)A-Myt 3 (+EA=Mys+ F(1H+E)A+ Myt
1A-E)1+ )y,

140 de—3 Q=& 5 A+ Ept; (W EW 5 1-Ey,

yitd,y
. Sn— 22
15: n d,

16: n<n+on
17: while |7]>1 do
18: if 7>1 then

>y coordinates of donor element vertices

> update local parametric coordinate

19: Jj+1 I> update donor element
20: Nen-2 > adjust local parametric coordinate
21: else

22: j—j-1

23: N<n+2

24: end if

25: end while

26:  if [y-y,~d |<tol. then exit
27: end if

28: end for

29: d, <jj,+0.5(n-n,)

30: End procedure

[> translation in the 77 direction

Fig. 7 Newton-Raphson iteration for determining the

translation in the 5 direction

(4) After the movement of wing/pylon inter-
sections in parameter domain, deform the mapped
mesh in parameter domain. Since it is essentially
a 2D mesh deformation problem in parameter do-
main, various mesh deformation algorithms can
be utilized. Delaunay graph mapping is adopted
here due to its simplicity. Delaunay graph is gen-
erated by GEOMPACK"*, a FORTRAN library
for Delaunay triangulation. The initial and de-
formed Delaunay graphs and mapped meshes are
shown in Figs. 8,9, respectively. Here the trans-

lation of 20% chord length along the direction of
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the outboard wing is assumed, and two auxiliary
points are added to the left middle side and the
right middle side of Delaunay graphs, respective-
ly, in order to prevent possible intersections be-

tween the graph elements.

(a) Initial Delaunay graph

<

(b) Deformed Delaunay graph

Fig. 8 [Initial and deformed Delaunay graphs

(a) Initial mapped mesh

(b) Deformed mapped mesh

Fig. 9 Initial and deformed mapped meshes

(5) According to the deformed mapped mesh
in parameter domain, calculate the new coordi-

nates of the vertices on the wing surface using

Eq. (2). The resulting wing surface mesh in
physical space is shown in Fig. 10. Compared to
Fig. 5, it can be seen that the wing/pylon inter-
sections are moved smoothly across the boundary

of the inboard wing and the outboard wing.

Fig. 10 The resulting wing surface mesh in physical space

1.2 Delaunay graph mapping

Since the vertical, horizontal and spanwise
locations are designated as design variables, once
the new locations are specified, the nacelle sur-
face mesh is moved rigidly and the wing surface
mesh is deformed by the above method. There-
fore, the next step is the smooth deformation of
the pylon surface mesh. Widely used physical
analogy based mesh deformation strategies, such
as spring analogy™™ or linear elasticity-based

method™*,

cause of the difficulty in association with the stat-

may be not suitable for this case, be-

ic equilibrium formulation for fictitious spring
network or linear elasticity on curved surfaces. In
fact, noncoplanar tension spring network cannot
be static equilibrium, so that it is not capable of
surface mesh movement on curved surfaces. To
overcome the difficulty, Delaunay graph mapping
is employed to deform the pylon surface mesh ac-
cording to the movement of wing/pylon intersec-
tions and nacelle/pylon intersections. Delaunay
graph mapping has been successfully applied to
2D planar and 3D volumetric mesh deforma-

M1 Since the mesh movement depends on the

tion"
movement of the underlying graph element, as
long as the movement of the graph element is
smooth, the resulting mesh is moved smoothly.
Thus, Delaunay graph mapping is also applicable
for this case. In the following, the pylon surface

mesh deformation according to the horizontal
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movement of the nacelle is presented to illustrate
it.

First, a bounding box within which the ini-
tial pylon geometry and possible deformed pylon
geometry lie is created, as shown in Fig. 11. The
eight corner points of the bounding box and the
points along the wing/pylon intersections and the
nacelle/pylon intersections (red points shown in
Fig. 11) are defined as boundary points for Delau-
nay tetrahedralization, which is yield by an open
source tetrahedral mesh generator TetGen™'.
Then for any point P on the pylon surface, the

coordinates of the point P can be calculated by

Fig. 11 Bounding box

Tp = Ee,x,
=06 (3)

2p = E ez,
;

where (x;,v;.2) , ¢ = 1,2,3.,4 are the nodal
points of the graph element where the point P lo-
cated, shown in Fig. 12, ande;, , i =1,2,3,4 the
four relative volume coefficients. This graph ele-
ment and the corresponding relative volume coef-
ficients are also provided by TetGen, so addition-
al search procedure is avoided. When the nacelle
movement, for example 10% chord length along
the negative horizontal direction, is specified, the
points along the nacelle/pylon intersections are
moved accordingly, leading to the movement of
the graph element, as shown in Fig. 13. There-
fore, the new coordinates of the point P is given

by
= Se
Ve = Dley

z,p:Ze,z; 4)

where (x;5yi,2:), i =1,2,3,4 represent the new

coordinates of the nodal points.

Graph element

Fig. 12 Graph element

Graph element

Fig. 13 Movement of graph element

The application of Delaunay graph mapping
to the case of the vertical or spanwise movement

of the nacelle is exactly the same.
1.3 Complete procedure and applications

In summary, the complete procedure of the
proposed surface mesh movement algorithm can
be described as:

(1) Move the nacelle rigidly according to the
specified vertical, horizontal and spanwise move-
ment;

(2) According to the spanwise movement of
the nacelle, determine the movement of the
wing/pylon intersections and deform the wing
surface mesh using surface mesh mapping;

(3) According to the new locations of the
wing/pylon intersections and the nacelle/pylon
intersections, apply Delaunay graph mapping to
deform the pylon surface mesh.

Figs. 14(a—1f) demonstrate the surface mesh
movement for different nacelle positions, inclu-
ding £ 3% translations along the vertical direc-

tion, £10% translations along the horizontal di-
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—3% translation along

1% translation along the vertical direc

Fig. 14 Surface mesh movement for different nacelle positions (transparent; initial, so

translations along the span-
wise direction (in unit of mean aerodynamic
chord). As can be seen, even for large move-
ment, the consistency of the underlying wing ge-
ometry and the quality of the deformed surface

meshes are maintained

2 Discrete Adjoint-Based Optimiza-

tion Framework

Discrete adjoint method is among the most
efficient optimization strategies, due to the cost
of gradient computation essentially independent of
the number of design variables. In order to devel-
op a discrete adjoint-based optimization frame-
work, a procedure for the computation of the sur-
face sensitivity with respect to design variables is
required. In this section, the surface sensitivity

procedure is implemented and integrated into a

discrete adjoint-based optimization framework.
2.1 Discrete adjoint formulation

Provided an objective function L , for in-

stance, drag coefficient C;, and design variables
20]

D , according to the duality principle’
model for the computation of the sensitivity can

be formulated ast
dL
dD

LY [IRTT
( Jx:\l] Jx:l”

IREAD

where x s represents the surface mesh point coor-

dinates, x,; the volume mesh point coordinates, w
the flow variables, R the residuals of the dis-
cretized flow equations, and K the stiffness matrix
emerged from volume mesh motion problem.
Except for the [dx../9D]" term, the compu-
tational components for all other terms in Eq. (5)

have been implemented in our previous work™*
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The [0L/dx, 1" and [0L/dw]" terms are con-
structed explicitly according to the definition of
the objective function. Once the [dL/Iw]" term is
ready, let A, = [dR/dw] "[aL/aw]" , then the

flow adjoint equations are given by

IRT" . _TaL7"
EIRS

The [IR/Iw]" term, the transpose of the flow
Jacobian, represents a very complicated matrix
structure. Thus, this term is not explicitly con-
structed, only implicitly computed by matrix-vec-
tor multiplication with AD tools. The flow ad-
joint equations are solved by multi-color Gauss-
Seidel method™ . The [IR/dx, ]" term consti-
tutes a fairly complicated sparse matrix, also im-
plicitly calculated by matrix-vector multiplication
with AD tools. The term [ K] " is associated with
the mesh adjoint problem, which can be solved by
the identical procedure for the volume mesh mo-

tion problem.
2.2 Surface sensitivity procedure

The remaining [dx../dD]" term, referred
to as surface sensitivities, denotes the sensitivi-
ties of the surface points with respect to the de-
sign variables, related to the above surface mesh
movement algorithm. In the following, the sur-
face sensitivities of different components are con-
sidered respectively.

(1) For any point on the nacelle surface,
since the nacelle is moved rigidly, the surface

sensitivities can be easily calculated as

IX racelle _
D I 7

where Xx,.n. represents the coordinates of the
point and I represents a 3 X 3 identity matrix.

(2) For the wing surface, according to Sec-
tion 1.1, three routines should be differentiated:
the movement of intersecting lines in parameter
domain, 2D mesh deformation in parameter do-
main and the calculation of the new coordinates in
physical space. Although handed derivation may
be used, the application of AD tools is preferred,
because AD tools can generate routines to com-
pute accurate sensitivities in an efficient and auto-

matic manner without human intervention, re-

ducing the implementation time. In this work.,
AD tool Tapenade® is applied to generate the
differentiated routines as it is free available and
supports Fortran 90 language. The result of the
application of AD tool Tapenade to Newton-
Raphson iteration used in the movement of the
wing/pylon intersecting lines is shown in Fig. 15.
In this case, d, is set as the independent input
variable and d, as the dependent output variable.
Ifd, dissettol,d, dwill give the required sen-
sitivities with respect to d, . Other differentiated

routines can be obtained in an identical manner.

Algorithm 2 Differentiation of Newton-Raphson iteration

Input:

y,—local parametric coorinates

d,—translation in the y direction

iy, Jo—initial donor element index

&,,;,—initial paremetric coordinates

y,—coordinates of background mesh
Output:

d, —translation in the 77 direction

d, —d-sensitivity with respect to d,
1:procedure Newton-Raphson(y,dV,is, o S0 To» Vi &)
2. §<2(&i)1.0 >local parametric coordinates
3. N <2(M-i)"1.0
4 i
RE A
6: &<¢,
7. N<1,
8 N-d=0
9: for m<1,miter do
100 yi<=yli))
11 y»wy(tl 1)
12: Ve =yulitl, j+1)
13: ViVl j+1)
14y d——3(1=Ew-5 I+ Ey+ 51+ Ept (18,
150y =3(1=E)(A-Ny 3= Myt 3 (1+E)A+ Myt

$(1=5)(1+ My,

16 dd——7 (1-&y—3(L+ &yt g (L+ Oyt 3(1-E)y,

dy dvy d
7. on d-——g7—
P Yotdyy
: dd
19:  n_d=n_d+sn_d
20: n <mn+on
21: while |7]>1 do

>y coordinates of donor element vertices

1> update local parametric coordinate

22: if 77>1 then

23: j<Jjtl > update donor element
24: Ne1-2 1> adjust local parametric coordinate
25: else

26: j<j-1

27 n—n+2

28: end if

29: end while

30: if [y—y,~d,|<tol. then exit
31: end if

32: end for

33: d,_d<05n_d

34: d,~j—j+0.5(n-1n,)

35: End procedure

> translation in the 77 direction

Fig. 15  Differentiation procedure of Newton-Raphson

iteration
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(3) For any point P on the pylon surface,
the new coordinates are calculated by Eq. (4).
Since the relative volume coefficients are only de-
pendent of the initial coordinates of the nodal
points and independent of the movement of the
nodal points, these coefficients are constants for
the computation of surface sensitivities. There-

fore, the surface sensitivities can be evaluated as
?ﬁ - Ze Z)
aayg B 28 a?i) ®)
(?921/; B Ze" 79?)

where dx’./aD , 9y'./aD , 92';/aD are zero or the

sensitivities already obtained in the previous two

steps.
2.3 Adjoint sensitivity verification

The complete sensitivity (the dL/dD term in
Eq. (5)) is verified with three methods: Central

finite difference, the complex step method™*

and
tangent model™",

Finite difference is the most common method
for estimating the derivative (sensitivity). The
second-order central finite difference for approxi-
mating the first-order derivative of an objective
function f(x) is given by

df _fGa+h — fx—h)

2
dr o +0x™) 9

where h is the step size. Nevertheless, this meth-
od often suffers from the " step-size dilemma”.
The step size should be small enough to minimize
truncation error while not so small that round-off
error dominates the result. In practice, a suitable
step size is usually determined by trial and error.

The complex step method is an accurate and
robust derivative approximation method and has
been applied to exact linearizations of complicated

251 For a real-val-

real-valued residual operators
ued function f(x) , if the input becomes a com-
plex value x + ih , where h is a small step size,
the Taylor series of the function f(x 4 ih) can be

written as

flx+ih) = f(x)+ihf (x)+ 0k (10)
Accordingly, the derivative f'(x) can be approxi-
mated by

f/(;r):Imq(JZJrih)) an

This approximation is also second-order ac-
curate and no differencing involved, avoiding the
"step-size dilemma”. So this method can provide a
very accurate derivative approximation, if a small
enough step size is given.

The tangent model is exact linearization of a
vector function with respect to one variable. It is
commonly used for sensitivity analysis and verifi-
cation of adjoint model. If both tangent model
and adjoint model are implemented exactly, the
duality principle assures that the sensitivities cal-
culated by two models are consistent within ma-
chine precision. Even a tiny inexact linearization
in adjoint model will immediately manifest lack of
consistency. Accordingly, the tangent model is
very useful for the verification of adjoint imple-
mentation.

The sensitivities of lift coefficient C; and drag
coefficient Cp with respect to the horizontal move-
ment D, , the spanwise movement D, and the ver-
tical movement D, , calculated by different meth-
ods, are shown in Tables 1,2, respectively. The
finite difference step size for the horizontal move-
The finite difference step size for

The finite

ment is 10°°,
the spanwise movement is 1, 4107,
difference step size for the vertical movement is
10 7. The complex step size is 10 %, All equa-
tions involved are converged to machine precision
to avoid any algebraic error. The adjoint sensitivi-
ties yield an agreement of 9—11 significant fig-
ures when compared to the results of the complex
step method and the tangent model, and an
agreement of 4—38 significant figures when com-
pared to the results of the finite difference meth-
od. It is evident that the adjoint sensitivities ob-

tained by the current approach are highly accurate

for the gradient based optimization process.
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Table 1 Adjoint sensitivity verification for lift coefficient with respect to design variables

aC aC aC

Method 9;): ,75)1‘ ﬂ;)]
Finite difference —9.451 502 889 790 29X 10" —8.139 215492 062 95X10 % 7.558 051 451 256 52X 10!
Complex-step —9.451 502 894 684 83X 10" —8.139 456 108 942 67X10"* 7.758 051 024 375 74X 10"
Tangent —9.451 502 894 697 32X 10 ' —8.139 456 108 909 56 X10 % 7.758 051 024 325 96X 10 '
Adjoint —9.451 502 894 683 65X 10 ' —8.139 456 108 907 21 X10* 7.758 051 024 323 85X 10 '

Table 2 Adjoint sensitivity verification for drag coefficient with respect to design variables

aCy
aD,

Method

aC, IC,
aD, aD.

—5.620 390 899 213 62X10 °
—5.620 390 514 898 58 X10°
—5.620 390 515 007 32X10°°
—5.620 390 514 972 17X10°°

Finite difference
Complex-step
Tangent
Adjoint

8.281 678 914 074 6210 *
8.281 621 087 656 65X 10 °
8.281 621 087 670 01X 10 *
8.281 621 087 725 22X10*°

4.726 797 349 363 65X 10 *
4.726 797 172 369 31X10*
4.726 797 172 340 63X 10 *
4,726 797 172 341 57X 10 ?

3 Optimization Result

The proposed discrete adjoint-based optimi-
zation framework is used for the optimization of
the nacelle position on the DLR-F6 WBNP config-
uration for drag minimization. This optimization
problem can be formulated as

min Cp

subject to Cp = Cy i (12)

w.r.t. D
where C| . represents the lift coefficient of the
initial configuration. The mean aerodynamic
chord is 0. 141 2 m and half model reference area
is 0. 072 7 m*. The computational mesh consists
of 570 866 points and 3 161 828 tetrahedral cells,
as depicted in Fig. 16. The Mach number is 0. 75
and the incidence is 1°. The lower and upper lim-
its of the design variables are shown in Table 3.

Table 3 Lower and upper limits of the design variables

%
Design Lower Initial Upper
variable limit value limit
Horizontal —10.0 0 +1.0
Spanwise —10.0 0 +15.0
Vertical —10.0 0 +1.0

[26]

Optimization package NPSOL"*', which is

based on sequential quadratic programming
(SQP) method™”, is used to drive the optimiza-
tion process. Table 4 shows the optimization re-

sults. The drag coefficient is reduced from C, =

Fig. 16  Computational mesh of the DLR-F6 WBNP

configuration

0.028 55 to Cp, = 0. 028 34, while the lift coeffi-
cient remains constant. Fig. 17 illustrates pres-
sure coefficient contours on the initial and opti-
mized wing-nacelle-pylon surface. The strong
shock on the initial pylon surface has been almost
removed, which contributes to the reduced drag.

Fig. 18 demonstrates the initial and optimized na-
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celle positions. The nacelle is moved further for-
ward, downward and inward compared to the ini-
tial position, and the resulting surface mesh re-
mains smooth and consistent under a relatively
large deformation. Fig. 19 shows the convergence
history for the optimization problem, in terms of
the merit function in NPSOL. The optimization
problem converges within a total of 9 design cy-
cles. The complete optimization takes approxi-
mately 4. 5 h of wall-clock time, using 48 cores
on the TH-1A supercomputer at National Super-
computer Center in Tianjin. This suggests that
the optimization framework is highly efficient for
this optimization problem and can be used as a de-
sign tool for the WBNP configuration.

Table 4 Optimization results

Coefficient  Initial value
Cp 0.028 55

CL 0.758 7

Optimized value Variation/ %
0.028 34 —0.74
0.758 7 0.0

Fig. 17 Pressure coefficient contours on the wing-

nacelle-pylon surface

4 Conclusions

A robust and efficient surface mesh move-
ment algorithm for surface mesh involving com-
plex intersections has been presented. The corre-
sponding surface sensitivity procedure is imple-
mented and integrated into a discrete adjoint-

based optimization framework. This optimization

Initial

Optimized

Fig. 18 [Initial and optimized nacelle positions

0.028 60

T

0.028 55

0.028 50

0.028 45

Merit function

0.02840

0.028 35

002830 . . . . . .
0 1 2 3 4 5 6 7 8 9

Iteration
Fig. 19 Convergence history for the optimization problem
framework has been successfully applied to the
optimization of the nacelle position on the DLR-
F6 WBNP configuration. The optimization almost
eliminates strong shock on the initial pylon sur-
face, resulting in a reduction of 2 counts of the
drag coefficient. The optimal nacelle position is
achieved within less than ten iterations, which in-
dicates high efficiency of the proposed optimiza-
tion framework. Future work will focus on aero-
dynamic optimization based on the Reynolds aver-
aged Navier-Stokes equations. The optimization
concerning wing geometry and nacelle position

will be simultaneously considered.
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