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Abstract: To study the bridging effect of partly-cured Z-pin, Z-pins with different curing degrees are manufactured
by controlling pultrusion parameters. A unit cell is selected to analyze the stress of Z-pinned laminates and the
quantitative relationship between the maximum bridging force and Z-pin diameter, embedded length, interfacial
shear strength and tensile strength is acquired. The Z-pin "bridging law” test and Z-pin tensile test are carried out
to study the effect of Z-pin’s curing degree on bridging effect, and the bridging efficiency is defined to evaluate the
reinforcement effect of Z-pin. The mode | interlaminar fracture toughness (G¢) is measured by the double canti-
lever beam test. The experimental results show that Z-pin’s co-curing with laminate matrix can improve the bridg-
ing force significantly and the fitting results show a linear relationship between Z-pin curing degree and interfacial
shear strength. The three-dimensional images of the surface of pullout Z-pins indicate that the failure mode
changed from totally interfacial debonding to a mixed mode. Finally, the reinforcement by partly-cured Z-pin can
be used to further enhance the interlaminar toughness. Compared with completely-cured Z-pin, G ¢ of Z-pin with
67.6% curing degree increases by 47.0%.
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0 Introduction

Advanced composites in laminated form have
been extensively applied in many industries, espe-
cially in aerospace engineering because of their
high strength/weight ratio relative to metallic
materials'. But a long-standing problem with fi-
ber-reinforced polymer laminates is their low de-
lamination resistance and poor impact damage tol-
erance due to the lack of through-the-thickness
reinforcement. It has limited the application of
laminated composites in structures susceptible to
impact, in-plane shear or through-thickness ten-

2], New materials and techniques have

sile loads
been developed to increase the delamination

toughness and the impact resistance of laminates,
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including toughened resins and through-the-thick-
ness reinforcement techniques, such as stitching,
weaving, 3-D braiding and Z-pinning™*!.

Z-pinned laminates are a class of continuous
fiber reinforced polymer composite materials
which are reinforced in the through-the-thickness

direction with fibrous composites or metal

rods?, called Z-pin. Z-pins can increase the in-

]

terlaminar fracture toughness®™, impact damage

[8] [9-10]
b

resistance"®’, damage tolerance fatigue re-

L) and joint propertiest ™ by inducing

sistance
crack bridging tractions. This approach has been
applied on some military aircraft, including the
FA-18 Superhornet, C17-Globemaster [l heavy-
lift transporter, and other aerospace applica-

tionsH'®,

How to cite this article: Chu Qiyi, Li Yong, Xiao Jun, et al. Bridging effect and efficiency of partly-cured Z-pin reinforced
composite laminates[ J]. Trans. Nanjing Univ. Aero. Astro., 2017,34(2):177-187.

http://dx. doi. org/10. 16356 /j. 1005-1120. 2017. 02. 177



178 Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 34

The dominating mechanism of Z-pin rein-
forcement is the "bridging effect”—when the crack
propagates, the reinforcing Z-pin provides a clo-
sure force against the opening crack; at the same
time, the Z-pin's pull-out from the matrix con-
sumes large amount of energy, consequently im-
proving the toughness of laminates™™. There-
fore, the reinforcement efficacy of Z-pin through-
the-thickness technology largely depends on the
interfacial bonding of Z-pin and composites.

Several methods of enhancing the bridging
force were proposed. Knaupp et al. '*) manufac-
tured Z-pins with a rectangular cross-section by
changing the shape of mould, and pointed out
that different cross-section shapes would affect
the performance of laminates reinforced by Z-pin.
Knopp and Scharrt’ utilized surface treatment
methods to increase the surface roughness and the
number of active groups of Z-pin to enhance the
bonding between Z-pin and laminates. Wang and
Zhang et al. proposed twisted Z-pin method to a-
chieve an improvement of bridging force by in-
creasing the contact area of interface® 27,

The above methods to improve Z-pin bridg-
ing force are mainly from the perspective of in-
creasing the contact area between Z-pin and lami-
nates. And the interfacial bonding is decided by
the bonding strength of Z-pin and the laminates.
If we can appropriately reduce the curing degree
of Z-pin on the premise of meeting the stiffness
demand during the ultrasonic inserting process,
an enhancement of interfacial bonding between Z-
pin and laminates can generate because of a larger
extent of co-curing between the residual active
group in Z-pins and the laminated prepregs.

The purpose of this paper is to improve the
reinforcement efficacy of Z-pin based on the strat-
egy of partly-cured Z-pins through the experimen-
tal research on the relationship between the
bridging force and the curing degree. In this pa-
per, this stress analysis of the bridging Z-pin re-
veals the quantitative relationship between the

maximum bridging force provided by a single Z-

pin and the Z-pin's diameter, embedded length,
interfacial shear strength and tensile strength.
The Z-pin "bridging law” test is conducted to ac-
quire the Z-pin’'s bridging force and analyze the
bonding situation between Z-pin and the lami-
nates. Finally, the influence of Z-pin’s curing de-
gree on the mode | interlaminar fracture tough-
ness is studied by the double cantilever beam

test.

1 Material and Methods
1.1 Material

Carbon fiber T300 and 180 cure-type epoxy
resin FW-125 for Z-pin pultrusion are supplied by
Toray Industries, Inc. , Japan and Kunshan Yubo
Composite materials Co., LTD, China, respec-
tively. And the performance parameters are
shown in Tables 1, 2.

The carbon fiber/epoxy prepreg in nominal
thickness of 0. 125 mm supplied by Weihai Guan-
gwei Composites Co. ,» LTD is adopted, and the
resin content is approximately 33wt %.

Table 1 Performance parameters of FW-125 epoxy resin

. Viscosity/ Specific Gel time/
Component . .
(Pa«s) gravity min
FW125-A — 1.16 5—8(120 C)
FW125-B 0.05—0.1 1. 20 3—6(130 C)

Table 2 Performance parameters of T300 carbon fiber

Tensile strength/ Tensile modulus/ Elongation/

Brand MPa GPa %

T300 3530 230 1.5

1.2 Pultrusion of partly-cured Z-pin

Z-pins with different curing degrees are ob-
tained by pultrusion process: Carbon fibers are
impregnated with epoxy resin and with the pul-
trusion speed, and mould and oven temperatures
of post-curing are automated controlled. Z-pins
are rolled for inserting after cooling. The curing
degrees of Z-pins are measured by the differential
scanning calorimeter (DSC) methods.

Z-pins with different curing degrees are ob-
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tained by the pultrusion process and the DSC

curves of Z-pins with different curing degrees are

shown in Fig. 1. The curing degrees of Z-pins

with different pultrusion parameters are calculat-

ed in Eq. (1) and shown in Table 3.
a=(H,—H,/w)/H, @b)

where H, is the specific enthalpy of the curing re-

action of the pure uncross-linked resin. J/g; H,

the specific enthalpy of post-curing of Z-pin, J/g;

w the resin content of Z-pin, wt%.
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Fig.1 DSC curves of Z-pin with different curing de-

grees

Table 3  Results of pultrusion parameter and curing

degree of Z-pin

Pultrusion Mould Oven
Degree of
No. speed temperature temperature
B . o . o cure o/ %
v/(mmes ') Theua/C Towen/C

1 3.85 90 125 50. 6

2 3.85 90 130 67.6

3 3.85 90 135 71.4

4 3.26 90 135 75.8

5 3.85 90 140 86.4

To study the effect of partly-cured Z-pin on
the interlaminar reinforcement, Z-pins with the
curing degrees of 67. 6%, 75.8% and 86.4% are
chosen to conduct the Z-pin "bridging law” test
and the DCB test. And the completely-cured Z-
pin reinforced specimens are manufactured as the
control groups. Z-pins with curing degrees of
50.6% and 71. 4% are eliminated because the

50. 6% Z-pin has poor stiffness for insertion and

the 71. 4% Z-pin is close to 75.8%.

1.3 Manufacture of Z-pinned composites

The manufacture of Z-pinned composites
consists of three stages: (1) Preparation of pre-
form; (2) Z-pin inserting process; (3) Curing
processing. The preparation of preform is con-
ducted with computer numerical control (CNC)
inserting machine, and the Z-pins are arranged in
a square pattern inside the foam carrier.

Then the Z-pins will be inserted into the
prepreg stack by UAZ (Ultrasonically assisted
Z-fibre™ ) method with an ultrasonic tool in

Fig. 2.

Fig. 2 Ultrasonic inserting process of Z-pin

The process starts by placing a polystyrene
foam carrier containing Z-pins over the prepreg
(Fig. 2(a)). The Z-pins are arranged in a square
pattern inside the foam carrier. The role of the
carrier foam is to ensure an even spacing between
the Z-pins and to provide lateral support during
insertion preventing Z-pins from destabilizing.

Z-pins are driven from the foam carrier into
the prepregs using the ultrasonic horn assisted by
robotic arm (Fig. 2(b)). High frequency vibra-
tion is generated at the ultrasonic horn bottom to
heat the prepregs and to soften the resin matrix
while the gradually applied pressure drives the Z-

pins into the prepregs. Z-pins are inserted pro-
gressively by moving the ultrasonic horn over the
foam carrier several times until all the pins have

penetrated the prepreg stack with the robotic arm
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(Fig. 2(c)). Finally, the foam carrier is discarded
afterwards and any excess length of Z-pins pro-
truding the prepreg is shaved off by a blade to en-
sure a smooth surface (Fig. 2(d)).

The curing process of Z-pinned laminates is
also the key process of its manufacture during
which the interfacial bond between Z-pin and lam-
inates formed. The Z-pinned laminates are cured
in the autoclave with the curing process curves

shown in Fig. 3.

140 1.0
—Temperature
---Pressure
120 los
O 100 <
I I B bbbt 10.6
£ 80 %
§ £
é 60 410.4 a2
[}
& &
40 {02
20F , \
. ) . 0.0

0 50 100 150 200 250 300 350
Time / min

Fig.3 Autoclave curing process curves of USN12500

prepreg

1.4 Z-pin "bridging law” test

According to Ref. [17], the bridging effect of
Z-pin can be characterized by the "bridging law”,
which is the functional relationship between the
delamination crack-opening displacement and the
closure force from a single pin. The bridging
force increases with the increment of the displace-
ment until the peak while the interfacial debond-
ing occurs, and then the bridging force drops sud-
denly. The maximum bridging force is deter-
mined by the bonding condition of the interface
between Z-pin and the laminates. Therefore, the
bridging force is assumed to be influenced by Z-
pin co-curing with the matrix resin.

In order to confirm this assumption, four
different curing degrees of Z-pin with the diame-
ter of 0. 3 mm are employed for the Z-pin "bridg-
ing law” test and the inserting pattern is 3 X 3.
The specimen is a 40 mm long and 20 mm wide
block from stacked prepregs in [0/90],,,. A Tef-
lon film with the thickness of 10 pm is placed be-

tween the upper and lower laminates to avoid any
adhesive bonding (Fig.4). Two T-shaped tabs
are glued by epoxy grouting agent to the lami-
nates and stalled in the universal material testing

machine with a cross-head speed of 1 mm/min.

Specimen

Fig. 4 TIllustration of Z-pin "bridging law” test

1.5 Partly-cured Z-pin tensile test

The partly-cured Z-pin will undergo a post-
curing process during the curing process of Z-pin
reinforced laminates, which may cause the reduc-
tion of Z-pin's axial tensile property. Then Z-pin
will rupture before the interfacial debonding of Z-
pin and laminates so as to affect the bridging
effect of Z-pin. Therefore, it is necessary to stud-
y the influence of the curing degree on the tensile
properties of post-curing Z-pin.

The curing of Z-pin can be divided into two
stages: (1) Part-cured during the pultrusion;
(2) Post-curing during the co-curing with lami-
nates. Therefore, the post-curing of partly-cured
Z-pin can be simulated by the 130 °C isothermal-
curing for 120 min. The Z-pin tensile test config-
uration is shown in Fig. 5. The free length of Z-
pin is 250 mm. The universal material testing
machine moves in tension at a speed of 0.5 mm/
min. The ultimate strength and the axial tensile

modulus of Z-pin are calculated by

4Pmax
O = 2)
_4AP * lg
MU AL e d (8

where P, is the peak load of the load-displace-
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Fig.5 Fixture of partly-cured Z-pin tensile test

ment curve, N; d the diameter of Z-pin, mm; [,
the gauge length of extensometer, mm; AP/Al

the slope of load-deformation curve, N/mm.
1.6 Double cantilever beam (DCB) test

Quasi-static mode | interlaminar toughness
tests are performed employing DCB specimens ac-
cording to ASTM D 5528 standard test method,
and performed at 20 °C. The laminated beams are
stacked in [0],, with the thickness of 3 mm and
180 mm in length, 25 mm in width. A 50 mm
long Teflon film is inserted between the upper
and lower beams to create a pre-existed crack.
Two T-shaped tabs are glued to the top and bot-
tom surfaces of the laminates and firmly gripped
for testing in the universal material testing ma-
chine at a cross-head speed of 2 mm/min. The
load-displacement curves are recorded during the

tests (Fig. 6).

Fig. 6 Experiment fixture of DCB test

2  Result and Discussion
2.1 The maximum bridging force of Z-pin

The failure mode of Z-pin in the mode [
load includes the pullout of Z-pin from laminates
and the rupture of Z-pin itself. Therefore, the
maximum bridging force provided by Z-pin F, ..
which determines the reinforcement capacity of Z-
pin can be calculated by

j ndlr,,  Z-pin pullout

Fp.m;nx = (4)

lndzap,u/él Z-pin rupture
where [ is the embedded length of Z-pin, mm,
and t, . the interfacial shear strength, MPa.

The maximum bridging force provided by Z-
pin depends on the diameter, embedded length of
Z-pin and the relative value of interfacial shear
strength and the Z-pin tensile strength. With the
increase of the embedded length of Z-pin, the axi-
al stress of Z-pin increases. Then Z-pin will rup-
ture once the axial stress reaches the tensile
strength of Z-pin. Z-pin cannot continue to pro-
vide more bridging force by continuing to increase
the embedded length. There exists a critical em-
bedded length /..

Stress analysis is conducted by a unit cell re-
inforced by a single Z-pin (Fig. 7). From the e-
quilibrium equation, we can deduce the relation-
ship of Z-pin axial tensile stress ¢, and interfacial

shear stress ¢ between Z-pin and laminates

2
‘z'7'ca’°A:C=i°agp s Ax (5)
4 dx
dop _ 4t
o d (6)

where dg,/dx is the stress gradient along the Z-
pin axial direction, MPa/mm.
The maximum axial stress g,,my 0f Z-pin can

be calculated by

e L
Jo ao‘p:j) Z(.;SHI D
Op.max — %n,.s (8)

Therefore, the critical embedded length of Z-

pin can be calculated by

=2y €))

Tp.s
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Fig. 7 Stress analysis of Z-pin in the laminates

When the embedded length [ is lower than
the critical embedded length of Z-pin ., the fail-
ure mode is interfacial debonding and being
pulled-out, otherwise the Z-pin fails in rupture.

The relationship between Z-pin curing degree
a and interfacial shear strength r,,.and the tensile
strength g, can be acquired by Z-pin "bridging
law” test and tensile test. Therefore, the relation-
ship between the maximum bridging force F, ..

and Z-pin curing degree « can be determined.

2.2 Effect of Z-pin’s curing degree on bridging

force

Fig. 8 shows the typical load-displacement
curve of Z-pinned laminates in the "bridging law”
test. The total process can be divided into three
stages: (1) The bridging force increases linearly
with the displacement while Z-pin deforms elas-
tically. The slope is determined by the axial ten-
sile module of Z-pin. (2) When the bridging force
reaches P,.., debond occurs and the force drops
to P;. (3) Z-pin is gradually pulled out from the
matrix while the friction can contribute energy
absorption.

Therefore, the interfacial shear strength r,
can be calculated by

T — P max
Y nrdl

The bridging effect provided by Z-pin de-

(10)

pends on many factors such as Z-pin properties,
residual stress at the interface between the Z-pin

and the composite due to the mismatch of coeffi-

[22]
’

cient of thermal expansion (CTE) and the
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Fig. 8 Typical load-displacement curve of Z-pin

"bridging law” test

frictional effect during the pullout process. The
co-curing between Z-pin and laminates may im-
prove the interfacial bonding and reduce the inter-
facial crack caused by the CTE mismatch. There-
fore, the decrease of Z-pin curing degree will en-
hance the bridging effect.

The relationship of interfacial shear strength
and Z-pin curing degree is shown in Fig. 9. It is
found out that the shear strength of Z-pin/lami-
nates’ interface increases with the decrease of Z-
pin curing degree. Compared with the 100% Z-
pin, the interfacial shear strength of Z-pin with
67.6% curing degree is improved by 30.7%. Ac-
cording to the results of the linear fitting, the in-
terfacial shear strength r,, shows a linear relation
with curing degree of Z-pin a, namely

Tpe =44.44 —21.1¢ R*=0.9773 (1)

The metallograph of interface of laminates
and Z-pin with different curing degrees is shown
in Fig. 10. There exists obvious crack along the
completely-cured Z-pin/laminates’ interface. This
is due to the interfacial residual stress caused by
CTE mismatch. Rare obvious interfacial crack
can be observed while the Z-pin is 67. 6% cured,
which ensures a better interfacial bond. There-
fore, the partly-cured Z-pin can provide better
bridging effect.

To explain the reinforcing mechanism fur-
ther, the Leica DVM5000 three-dimensional video
microscopy is adopted to observe the surface mor-

phology of Z-pin after pullout (Fig. 11). Com-
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Fig. 9 Interfacial shear strength and Z-pin curing de-
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Fig. 11 Surface morphology of Z-pin after pullout

pared with the completely-cured Z-pins, the part-
ly-cured Z-pins with 67.6% curing degree are
much rougher; The surface of Z-pin with 67. 6%
curing degree has obvious resin fragments. This
indicates that the failure mechanism changes from

interfacial debonding to a combined failure of in-

terface and cohesive failure. Therefore, we can
conclude that the decrease of Z-pin's curing de-
gree can improve the bridging effect by on one
hand eliminating micro cracks during manufacture
and on the other hand enhancing the co-curing

effect between Z-pin and laminates matrix.

2.3 Effect of Z-pin's curing degree on tensile

strength

The results of the Z-pin tensile test are
shown in Fig. 12, and we can see that Z-pin cu-
ring degree has marginal effect on the tensile
module. It suggests that the axial elastic property
is mainly up to the reinforcement fiber. Howev-
er, the axial tensile strength shows a negative
correlation with Z-pin curing degree. With the re-
duction of Z-pin' s curing degree, the tensile
strength shows an obvious decrease: The average
tensile strength of Z-pin with 67. 6% curing de-
gree is only 81. 4% of completely-cured Z-pin.
This is because secondly curing will reduce the
bonding situation between resin and carbon fiber

inside Z-pins.
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Fig. 12 Z-pin tensile properties and Z-pin curing de-

gree

2.4 Optimization of Z-pin bridging efficiency
According to Eqgs. (4), (11), the relation-
ship between Z-pin maximum bridging force
F, ..« and the curing degree «, diameter d and
embedded length / of Z-pin can be expressed by
ndl (44. 44— 21. 1) 1 <<,
Frunes {Tcdzop_u /4 1>=1,
The critical embedded length of Z-pin can be

12

calculated by
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Fig. 13 shows the relationship between the

X Gpou (13)

maximum bridging force of Z-pin F, ., with dif-
ferent curing degrees and embedded length for the
Z-pin with the diameter of 0. 3 mm. The results
of Fig. 13 indicate that the interfacial bonding can
be enhanced by the co-curing effect which im-
proves the bridging force of Z-pins fail by pull-
out. However, when Z-pins fail by rupture, due
to the adverse effect of partly-cure on the tensile
strength of Z-pin, the maximum bridging force
provided by partly-cured Z-pin is lower than that
by completely-cured Z-pin.
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Fig. 13 Z-pin maximum bridging force and embedded

length

In order to compare the interlaminar rein-
forcement of Z-pin with different curing degrees
reasonably, the Z-pin bridging efficiency ¢ is de-
fined by the specific value of the maximum bridg-
ing force per embedded length between the partly-
cured and the completely-cured Z-pins, namely

F o e (100%) /1

The bridging efficiency of Z-pin with differ-

X 100 % (14)

ent curing degrees is shown in Fig. 14. It can be
observed that the bridging efficiency increases
with the reduction of Z-pin curing degree within
the critical embedded length. The efficiency of Z-
pin with 67. 6% curing degree is improved by
29.0% compared with the completely-cured Z-
pin. When the embedded length reaches the criti-
cal value /., the bridging efficiency of Z-pin starts

to decline. For the 67. 6% curing degree of Z-pin,

when the embedded length reaches 4. 98 mm, the
efficiency is 100%. With the embedded length in-
creasing continuously, although the bridging
force still increases, the bridging efficiency of Z-
pin is lower than that by completely-cured Z-pin.
Therefore, the reinforced laminates thickness is
also an important consideration when we seek the

maximum interlaminar reinforcement of Z-pins by

utilizing the Z-pin/laminate co-curing effect.

Baseline

4 6
Embedded length / mm

Fig. 14 Bridging efficiency of Z-pin with different cu-

ring degrees

2.5 Mode | interlaminar fracture toughness Gjc

Five specimens of each degree of cure are
tested to study the influence of the co-curing
effect on G{¢», namely

3Po
2bCa—+1 A1

where P is the measured load, N; & the crack-

G|c: (15

open displacement, mm; b the width of the speci-
men, mm; and a the crack length, mm. A is the
correction factor of the crack length a, and is de-
termined experimentally by generating a least
squares plot of the cube root of compliance (¢§/
PH'E,

point and the origin of coordinates is defined as

The intercept between this intersection

the A-value.

The R-curves of the Z-pins with different cu-
ring degrees are shown in Fig. 15. The compari-
son between Gc v. s. crack length a of the sam-
ples indicates that the critical energy release rate
decreases with the increase of Z-pin's curing de-
gree. The results of DCB test are shown in
Fig. 16, and it is found that the average G¢ of

specimens reinforced with the completely-cured



No. 2 Chu Qiyi, et al. Bridging Effect and Efficiency of Partly-Cured Z-pin--+ 185

Z-pins is 1 105 J/m* and the average G ¢ of the
partly-cured Z-pins reaches up to 1 628 J/m* with

an increment of 47. 0%. The toughening effect is

significant.
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——75.8%
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Fig. 15 Delamination resistance curves (R-curves) of
different curing degrees Z-pins with DCB

specimens under mode-I crack opening
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Fig. 16  Comparison of average values of the critical

energy release rate of specimens with differ-

ent Z-pins’ degrees of cure

According to Refs. [4-6], inserting Z-pin can
improve the mode | interlaminar fracture tough-
ness significantly. The reinforcement mechanism
is that when the crack propagates into the Z-
pinned zone, on one hand the bridging of Z-pins
begins to suppress the propagation of crack, and
on the other hand the pullout of Z-pin consumes a
great amount of energy. Based on it, we assume
that the interlaminar fracture toughness of Z-
pinned laminates G ¢ can be divided into the fol-
lowing two parts

Gie =G + G (16)
where G, represents the interlaminar toughness of

the laminates without Z-pin, J/m’*; and G, the

interlaminar toughness provided by the Z-pins
which is related to Z-pin's interfacial bonding sit-
uation with laminates and equal to the energy
consumed by Z-pin’s pullout, J/m?.

According to Eq. (16), when the interfacial
bonding situation is improved, the energy con-
sumed by Z-pin will increase, and consequently
G ¢ will be improved. Compared with the com-
pletely-cured Z-pins, the active groups of the
partly-cured Z-pins can set off more chemical re-
action with the prepregs and occur secondary
cross-linking, forming covalent bonds, which

leads to the more energy consumed in the process

of Z-pin's pullout.
3 Conclusions

Z-pins with different curing degrees are man-
ufactured by pultrusion and measured by DSC
method. The Z-pin "bridging law” test and double
cantilever beam test are carried out to study the
influence of curing degree of Z-pin on the inter-
laminar reinforcement of laminates. From the
present results, several conclusions are drawn as
follows:

(1) The oven temperature and pultrusion
speed are the main factors to control the curing
degree of Z-pin by isothermal curing kinetics anal-
ysis. Z-pin's curing degree decreases by reducing
the oven temperature and increasing the pultru—
sion speed.

(2) The results of the stress analysis show
that the maximum bridging force of Z-pin is de-
termined by the Z-pin's diameter, embedded
length, interfacial shear strength and tensile
strength. Results of "bridging law” test indicate
an approximately linear relationship between Z-
pin curing degree and interfacial shear strength.
Compared with completely-cured Z-pin, the inter-
facial shear strength of Z-pin with 67. 6% curing
degree is improved by 30.7%. A change of Z-pin
pullout’s mechanism from interfacial failure to a
mix mode of interfacial and cohesive failure is ob-

served by three-dimensional video microscopy.
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Besides, the tensile strength of Z-pin decreases
with the reduction of Z-pin’s curing degree.

(3) Z-pin bridging efficiency is defined taking
the interfacial reinforcement and reduction of Z-
pin’s axial properties into consideration. Com-
pared with completely-cured Z-pin, the efficiency
of Z-pin with 67. 6% curing degree is improved by
29.0%. When the embedded length increases to
the critical value, all the Z-pin bridging efficiency
starts to fall down with the further increase of
length.

(4) The critical energy release rate of Z-
pinned laminates under mode | increases with
the reduction of Z-pin’s curing degree. Compared
with completely-cured Z-pin, G of Z-pin with
67.6% curing degree enhances by 47.0%.
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