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Abstract: The present study aims to analyze free vibration of thin skew plates made of functionally graded material
(FGM) by using the weak form quadrature element method. The material properties vary continuously through the
thickness according to a power-law form. A novel FGM skew plate element is formulated according to the neutral
surface based plate theory and with the help of the differential quadrature rule. For verifications, Numerical results
are compared with available data in literature. Results reveal that the non-dimensional frequency parameters of the
FGM skew plates are independent of the power-law exponent and always proportional to those of homogeneous iso-
tropic ones when the coupling and rotary inertias are neglected. In addition, employing the physical neutral surface
based plate theory is equivalent to using the middle plane based plate theory with the reduced flexural modulus ma-
trix.
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0 Introduction

The functionally graded materials (FGMs)
are showing increasingly wide applications in aer-
ospace and defense industries due to their excel-
lent ability to mitigate the problem existing in
laminated composites. The static, buckling and
dynamic behavior of FGM structural members is
important to structural engineers, thus has been
received great attentions. It seems that no special
tools are needed since FGM structural members

(1]

behave like homogeneous ones However, this

is only valid for certain cases, thus a vast body of

literature exists™®*,

Comprehensive reviews can
be found in Refs. [2,3].

The skew plate is one of the common used
structural members. The free vibration of skew
plates is also a fundamental topic. Due to the
strong bending moment singularities existing at

the obtuse angles, it is not easy to obtain accurate
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fundamental frequency even for homogeneous iso-
tropic thin skew plates with a large skew angle.
A lot of existing methods may encounter serious
convergence problems™!.

So far, few researchers have paid attention to
the free vibration analysis of FGM skew plates.

% investigated the dynamic charac-

Ruan et al.
teristics of FGM skew plates by using the differ-
ential quadrature method (DQM). Only two
boundary conditions, simply supported (S) and
clamped (C), are considered. If free boundary is
involved, however, DQM with the widely used
grid spacing may yield incorrect frequencies [7-*,
Previous research shows that the weak form
quadrature element method (QEM) , essentially a
high-order finite element method (FEM)., is
highly accurate and has good computational effi-
ciency’. QEM can yield accurate frequencies for
homogeneous isotropic thin skew plates even with

large skew angles ["'. Being FEM, the irregulari-
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ty in shape and various boundary conditions can
be easily treated. Besides, QEM converges expo-
nentially with the increase of the number of node
points .

The objective of the present investigation is
to perform free vibration analysis of thin FGM
skew plates by using QEM. A novel FGM skew
plate element is firstly developed according to the
thin plate theory based on the physical neutral
surface. Formulations are given in detail and new

results are obtained. Finally, some conclusions

are drawn based on the results reported herein.

1 Formulations of Weak Form Quadra-
ture FGM Skew Plate Element

1.1 Expressions of strain energy and Kinetic ener-
gy

An FGM skew thin plate with a skew angle
is schematically shown in Fig. 1. The side lengths
are denoted by a and . A uniform thickness & is
considered. Both Cartesian coordinate system (x,
y»2) and oblique coordinate system (&,7,2) are
set at the middle plane of the plate, thus —h/2<C
+<{h/2. Assume that Poisson’s ratio o 1s a con-
stant throughout the plate, but the elastic modu-
lus and mass density vary along the thickness di-
rection according to the power-law form defined
by

- Pm)<h£+%)k TP, (D

P(z) = (P,
where subscripts ¢ and m denote the ceramic and
metal. P(z) is either the elastic modulus E(z) or
the mass density p(z) and the power-law expo-

nent k£ is a non-negative variable.
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Fig. 1 Sketch of skew plate
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(b) Cross-section

The plate theory based on the physical neu-
tral surface is used due to the decoupling of the
stretching and bending in constitutive equations.
For transverse vibration, the strain energy of the
FGM skew plate is

11 N
U=2[ |« Drdzdy (2)
1 1

where D is a 3 X 3 symmetric matrix and k the

curvature vector defined by

:[ 4 9w iazw 8 ﬁzur]'r:
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where w (&, 9, 2) is the deflection. Subscripts &
and 7 denote the partial derivatives with respect
to the oblique coordinates & and 7. i. e., wg =
(’)wa/('JSZ , Wy, =(72w/(7$(717.

Elements in matrix D are defined by

=d*w/dy’ and wy,,
1511 :522 :B

D,; =Dy =D,, =D,, = — Dsinf

=D,, =D (sin’ 0+ pcos’9)

D(l—ﬁ—sinZ@*pcoszﬂ)/z 4)

UZ

where

W (ELk* +4E . E & +4AEL R +16E E k* + TEL R + 28E.E k + 12E%)

- n/2
o} J EG) (. yrde=

-2 1 —p

where ¢ is the distance between the middle plane

and the physical neutral surface which can be de-

termined byt ®1%

h/2
J E(2) (2 — e)dz =0 6)

—h/

It should be pointed out that the matrix D is

1201 — ) (k+3)(k+2)"(E. + E k)

5
exactly the same as the reduced flexural modulus
matrix due to the coupling of stretching and ben-
ding. The proof is given in Appendix A. It is
well-known that whenever stretching-bending
coupling exists, the reduced flexural modulus

matrix D should be used to obtain accurate results
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of stresses, displacements, buckling loads and " ) Z\: N Lol e :
wl(&E,mst) = i W& sm;sl) =
natural frequenciest!!. 7 = = o v
. N N
In order to de-couple the stretching and ben- Z 2 L(OL (P, (1) (D

ding completely in dynamics analysis, the cou-
pling and/or rotary inertias should be discarded.
Otherwise, the stretching and bending are still
coupled since the coupling inertia is not zero. In
present investigations, both coupling and rotary
inertias are neglected for simplicity. Therefore,
the kinetic energy of the FGM skew plate is given
by

76{61 ! ! 1 au’(g;zz’t) :
T—?J71J7 cos 6( o ) dedy (7

where ¢ is the time and I is given by

h/2
— < o :( C+ mk)h
=] porde=tetenh (g

where p. and p,, are the mass densities of the ce-
ramic and metal, respectively.
Only essential boundary conditions are re-
quired by using QEM.
Simply supported edge (S)
w =0 {5:? ! 9
7=+1
Clamped edge (C)
_ Jw —0 {5 =1
d& n=F 1

)

(10)

1.2 Weak form quadrature FGM skew plate ele-

ment

Let N be the number of node in either & or 7
direction. An N X N-node weak form quadrature
FGM skew plate element is formulated. For sim-
plicity in presentation, only Gauss-Lobatto-Leg-
endre (GLL) nodes are considered.

Denote &, p (k=1,2,+, N) the element
node coordinates in & and » direction (—1<C& .
<1) and & = . Explicit formula to calculate the
GLL points does not exist. For readers’ refer-
ence, the GLL integration points and correspond-
ing weights for N varying from 3 to 21 can be
found in Ref. [8].

According to the criteria for selection of dis-
placement functions, three slightly different dis-
placement functions can be assumed for the skew

plate element, namely""”

i=1 j=1
N+2 N

W) = S (O (P, (0 (12)

i=1 j=1
| N+2

N
w(Eapat) = D) DL (O h; (P (1) (13)

=1 j=1
where [;(§) and /; () are Lagrange interpolation

functions, %,;(§) and h; () Hermite interpolation

functions. In Eq. (12), w,; (#) contains the nodal
deflection w; (¢) (i,j=1,2,+-,N) as well as the
first-order derivative with respect to & at nodes on
edges E=F1, i.e., (w:); and (w)n (i =1,2,
-, N). In Eq. (13), 770,-,- (¢) contains the nodal de-
+, N) and the first-or-
der derivative with respect to 5 at nodes on edges
7=+ 1, e, (w)y and (w,)y (G=1,2,,N).

The definitions of Lagrange and Hermite interpo-

flection w,‘]‘(f)(l'9j:172"'

lation functions can be found in Refs. [7, 12].

A novel way is proposed in the formulation
of the plate element. Instead of using only one
displacement function as commonly conducted in
the formulation of a conventional finite element,
three displacement functions are used in the for-
mulation of the stiffness matrix. Eq. (11) is used
to compute w, as well as the mass matrix,
Eq. (12) is used to compute wg, and Eq. (13) is
used to compute w,,. In this way, the mixed sec-
ond-order derivative wy, is not needed as the de-
gree-of-freedom (DOF ) at the plate corner
points. Therefore, the plate element contains on-
ly (N*+4N)DOFs, one DOF at all inner nodes,
two DOFs at all boundary nodes, and three DOFs
at the four corner nodes.

The stiffness matrix is obtained by using
GLL quadrature, namely

N N
k=93 SV HH, [BG ) DB G g (1)

=1 =1
where H;, H; are the weight.
The strain matrix at an integration point (&,

n;) 1s given by

B(Sl"vj)g}:
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iyj=1,2,,N (15)
where §; is the Kronecker symbol, superscripts &
and 5 mean that the corresponding derivatives are
taken with respect to & and 7, respectively. More
precisely, A§ and Al are the weighting coeffi-
cients of the first-order derivative with respect to
¢ and 5, respectively, B§ and B’ the weighting
coefficients of the second-order derivative with re-
spect to & and 7, respectively. The degrees of
freedom, wy ,» contain the deflection at all nodes
and the first-order derivative with respect to & at
nodes on edges €= F 1 and the first-order deriva-
tive with respect to 5 at nodes on edges = +1,
Le s wys (w)ns (w)ws (wy)ie and (w,) e (Lsk
=1,2,
A% . By and B can be explicitly calculated by u-

, N). The weighting coefficients A},

sing the differential quadrature rule. The explicit
formulas can be found in Refs. [8, 127].

The mass matrix is also obtained by using
GLL quadrature. The diagonal terms mj in the

mass matrix are

wp NN
my :ME 2 H,6uH .0 .,

4 E=1m=1
i,j=1,2, N;I=NXG—1)+; (16)

Note that the diagonal terms related to the
derivative degrees of freedom are zero, thus they
are not included in Eq. (16).

If the element nodes are not the GLL points,
Gauss quadrature is usually adopted to obtain the
stiffness and mass matrices. In such cases, the
explicit formulas existing in DQM cannot be di-
rectly used to compute the weighting coefficients
Ay, A%, Bj and BJ. The proposed method"""
should be used. Besides, the row or column sum-
mation technique should be used to obtain a diag-
onal mass matrix. More details can be found in
Ref. [7].

For free vibration analysis of a thin FGM
skew plate, w(&,9,0) =W (&, p)sinwt, where w is
the circular frequency. If one N X N-node quadra-
ture FGM skew element is used, the equation of
motion is given by

KW =" MW an

where sinwt has been cancelled out, and the ar-

rangement of W is the same as the one used in
DQME,

The dimension of stiffness and mass matrices
is (N* +4N) X (N*+4N) and the same as the
one of DQM!!, However, the number of non-ze-
ro diagonal terms in the mass matrix is N? and
different from the one of (N* —4N-+4) in DQM.
After applying the essential boundary conditions,
we can obtain
KW =o* MW (18)

The dimension of the matrices and vectors in
Eq. (18) depends on the boundary conditions.
Eq. (18) can be solved by a generalized eigen val-

ue solver.

2 Numerical Results and Discussion

For the demonstration, FGM is composed of
alumina (Al,O;) and aluminum. The top surface
of the plate is pure alumina (ceramic) and the
bottom surface is pure aluminum (metal). The e-
lastic modulus and mass density for the alumina
and aluminum are E. =380 GPa, p. =3 800 kg/
m’, E, =70 GPa, and p, =2 700 kg/m’. Pois-
son's ratio w15 0.3,

Due to space limitations, rhombic plates (a
=5) with two combinations of boundary condi-
tions, i. e. , SSSS and CFFF, are considered. The
edge number denoted by O to @ are shown in
Fig. 1. SSSS denotes all four edges are simply
supported. And CFFF denotes that Edge 1 (=
—1) is clamped and the remaining three edges are
free (F). The non-dimensional frequency parame-

ter 2 is defined by
PI/D,, (19

Q=awa’

The plate is modeled by one proposed N X N-
node quadrature skew plate element and N =21
for accuracy considerations. The skew angle @
takes four values, namely, 15°, 30°, 45° and 60°,
Results are shown in Tables 1, 2.

It is seen that the results obtained by present
method, denoted by QEM, agree well with the
existing accurate upper bound solutions. Accurate
non-dimensional frequency parameters are ob-

tained by QEM although strong stress singularity
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Table 1 Comparison of non-dimensional frequency parameter © for SSSS rhombic plates
0
Model
15° 30° 45° 60°
number
QEM Ref.[14] QEM Ref.[14] QEM Ref.[14] QEM Ref.[14]
1 20. 868 20.868 24.891 24.899 34.678 34.749 62.030 62.409
2 48.205 48.205 52.638 52.638 66.277 66.277 104.95 104.95
3 56.106 56.107 71.694 71.711 100.23 100.25 147.57 147.67
4 79.043 79.043 83.825 83.829 106.89 107.04 196.29 196.29
5 104.00 104.00 122.82 122.82 140.80 140.80 205.15 205.86
Table 2 Comparison of non-dimensional frequency parameter Q2 for CFFF rhombic plates
0
Model 3 N N 0
15 30 45 60
number
QEM Ref.[15] QEM Ref.[15] QEM Ref.[15] QEM Ref.[15]
1 3.5831 3.5831 3.9278 3.9279 4.5051 4.5052 5.2407 5.2431
2 8.6964 8.6971 9.4095 9.4100 11.245 11.247 16.031 16.023
3 22.228 22.230 25.285 25.287 26.963 26.968 30.334 30.362
4 26.332 26.334 25.931 25.931 31.496 31.505 45.264 45.300
5 33.860 33.864 41.330 41.338 50.708 50.739 59.009 59.123
exists at the obtuse plate corners and corner func- 1.1
tions are not included in the assumed displace- 1.0
ments. 0.9F
<
It is also found that Q is independent of the s 08f
power-law exponent k. Therefore, the existing 07r
non-dimensional frequency parameters of corre- 0'60 3 6 9 12 15
sponding homogeneous isotropic skew plates are k
Fig. 2 Variation of scaling factor with power-law ex-

included for verifications. It was reported by
Abratel'™ that the natural frequencies of FGM
rectangular plates could be inferred from results
of rectangular plates made of homogeneous mate-
rials. Similar observation exists for the FGM
skew plates. In other words, if the frequencies of
the corresponding homogeneous skew plate
(k=0) are known, denoted by w., the nature fre-

quencies of the FGM skew plates can be obtained

by
PICO)D,, (k)
w — Niwcza(k)wc
Dy, (0)PI(k)

where o (k) is called the scaling factor and is

20

shown in Fig. 2 for the material considered.

ponent

3 Conclusions

Free vibration of thin FGM skew plates is
presented by using the weak form quadrature ele-
ment method. The material properties vary con-
tinuously through the thickness according to a
power-law form. A novel FGM skew plate ele-
ment is formulated according to the neutral sur-
face based plate theory and with the help of the
differential quadrature rule. For verifications,

Numerical results are compared with existing da-

ta. Numerical data show that the non-dimensional
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frequency parameters are independent of the pow-
er-law exponent and always proportional to those
of homogeneous isotropic skew plates if the cou-
pling and rotary inertias are discarded. It is
shown that employing the physical neutral surface
based plate theory is equivalent to using the mid-
dle plane based plate theory with the reduced

flexural modulus matrix.

Appendix A: Discussion on the reduced flexural modulus ma-
trix

For FGM or non-symmetric laminated plate, the
stress field is given by

O l Qn Q2 Qs €, 1

oy r= Qi Qun Qu|<e (Al(a))
rJ Qi Qi Qs )’J
or
o= 0 (A1(b)

After integration over the plate thickness, the consti-

tutive equation based on the middle plane is given by
N A B &M
ME ) (A2)
M B D K

h/

where

CQ(1,2,2%)dx (A3)

{AvaD> = J
—h/2

Let e be the distance between the middle plane and the

physical neutral surface. After integration over the plate

thickness, the constitutive equation based on the physical

neutral surface is given by

-G a0 a)

Eon
o
K
where
o h/2
A= oll—otd (A5
—h/2
and
h/2
J Q(z—e)dz=B—eA =0 (A5(b))
—h/2
From Eq. (A5(b)), e can be determined as
el =BA'=A"'B (A6)
Therefore, one has
N "h/2
D:J Q(z* —2x+e¢*)dx=D—BA'B (A7)
—h/2

where D is known as the reduced flexural modulus ma-
trixt

The derivation of D is different from the one presented
in Ref. [11] and is more general than the one presented in

Ref. [1] since it is also applied to anisotropic materials. Tt

is shown that using D is equivalent to employing the plate

theory based on the physical neutral surface.
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