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Abstract;: Identifying the stiffness and damping of active magnetic bearings (AMBs) is necessary since those pa-

rameters can affect the stability and performance of the high-speed rotor AMBs system. A new identification meth-

od is proposed to identify the stiffness and damping coefficients of a rotor AMB system. This method combines the

global optimization capability of the genetic algorithm (GA) and the local search ability of Nelder-Mead simplex

method. The supporting parameters are obtained using the hybrid GA based on the experimental unbalance re-

sponse calculated through the transfer matrix method. To verify the identified results, the experimental stiffness

and damping coefficients are employed to simulate the unbalance responses for the rotor AMBs system using the fi-

nite element method. The close agreement between the simulation and experimental data indicates that the pro-

posed identified algorithm can effectively identify the AMBs supporting parameters.
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0 Introduction

Compared with the traditional mechanical
bearings, active magnetic bearings (AMBs) are
nearly no friction and free of lubrication. There-
fore, AMBs have been increasingly used in turbo
machinery and aerospace applications. The stiff-
ness and damping of AMBs affect the stability
and performance of high-speed rotor AMBs sys-
tem and the identification for these values is im-
portant. Several methods have been developed for
the mechanical bearing identification and most of
these approaches use the least squares method

[ Santiago et al. 1i-

based on kinetic equations
dentified the stiffness and damping coefficients of
two sliding bearings using impact and imbalance
excitation. By comparing results of the two meth-
ods, the imbalance excitation method is more ro-

bust. Meanwhile, Andrés et al. ™ identified the
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bearing force coefficients from measurements of
imbalance response of a flexible rotor. But accu-
racy of the results is closely related to the size of
global (rotor) mass, stiffness and gyroscopic ma-
trices. Tiwari et al. ! presented an identification
algorithm for simultaneous estimation of residual
unbalances and bearing dynamic parameters. The
standard condensation method is used to reduce
the number of degrees of freedom (DOFs) of the
model and the identified parameters are closely a-
greed with the assumed parameters used in the

1 used instrumental varia-

simulation. Knaapen"’
bles to optimize the final values of AMBs' stiff-
ness and damping coefficients and the results
based on instrumental variables are better than
those of the least square method.

The stiffness and damping coefficients of

AMBs have a significant influence on the dynamic
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response of a rotor bearing system, ranging from
the bending critical speeds, modes of vibrations
and stability. Due to the special structures of
AMBs, the traditional method based on dynamic
equations cannot be applied directly. Therefore,

I proposed different methods

many researchers-"’
to identify the supporting parameters. In a rotor
AMB system, the deformation of the flexible ro-
tor becomes more obviously with the increasing
speed, which makes it more difficult to identify
the supporting parameters. The algorithms need
the gradient information of the objective function
with respect to the design variables and the solu-
tions cannot get out of local optimum points when
they fall in. Besides, this algorithm may skip the
global optimum solution because they depend on
the primitive values and may converge to a local
optimum solution which is near the starting
point. Experience and time are required to over-
come these disadvantages. Many search algo-
rithms have been developed to overcome the
drawbacks. For global optimization, one of the
most popular algorithms is genetic algorithm
(GA), which was described by Ying et al. "' and
other researchers %%,

GA is a stochastic search technique based on
the mechanism of natural selection and genetics,
and it does not need the mathematical require-
ments for the solution. This algorithm possesses
more flexibility characteristics than other meth-
ods using a single-point search, but lower effi-
ciency. Nelder-Mead Simplex method''" is a di-
rect optimization algorithm with powerful local
search ability, but it may fall into a local opti-
mum. In this paper, one optimization method
that combines the global optimization capability
of GAs and Nelder-Mead simplex local search a-
bility is proposed to identify the stiffness and
damping coefficients of AMBs, which will speed
up computation greatly and find the global opti-
mal solutions more effectively. Once GA locates
the candidate solutions, we make the candidate
solutions as initial values for the local search algo-
rithm, which will effectively search the local opti-

mal solutions that correspond to the termination

condition. From the comparisons between finite
element response and experimental measure-
ments, the proposed hybrid GA can effectively i-
dentify the stiffness and damping coefficients of
AMBs.

In this method, the first step is to calculate
the residual function R(p), which is the differ-
ences values between the theoretical imbalance re-
sponse by the transfer matrix method™* and the
experimental data. Optimization of the residual
function is the second step in identification of
AMB stiffness and damping. Since the appropri-
ate optimization algorithm not only can ensure the
accuracy of the bearing parameters, but also im-
prove the calculation efficiency, we propose the
hybrid GA, which combines the global optimiza-
tion capability with high efficiency.

1 Basic Parameter Identification

Principle of AMBs

1.1 Rotor AMB system

The test rig for identification is shown in
Fig. 1(a). Fig. 1(b) shows the rotor structure of

AMBs system!'*', The proportional-integral-de-

(D—Test rig; @—Fiber optic probe; @—Fiber amplifier;

(@—Current switch and control box; ®—PID control box;

®—Oscilloscope; @D—Drive; @—Data acquisition; @—Signal generator
(a) Rotor-AMB system

(b) Rotor employed in this system

Fig.1 Rotor-AMB system and rotor employed in this

system
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rivative (PID) control strategy controller is em-
ployed to control the magnetic bearing system.
For the PID controller, its transfer function G(s)
can be written as

G(s)=C, +Cys+ %
where C, is the proportional coefficient, C; the deriv-
ative coefficient, and C, the integral coefficient.

The steel shaft is 436 mm long with a main
diameter of 39. 8 mm. Table 1 describes physical
properties of the rotor. The AMBs employed in this
paper is shown in Fig. 2. Two pairs of eddy current
displacement sensors, that are orthogonally posi-
tioned, record the rotor displacements near each
AMB location. Fig. 3 shows the positioning of the
displacement sensors and their axial location, where
X1s Yis X253y, are the displacement for both AMBs
at two orthogonal direction. Signals from the dis-
placement sensors are directed to an industrial-type

data acquisition system connected to a PC.

Table 1 Physical properties of rotor

Parameter Values
Rotor length/mm 436
Rotor mass/kg 2.4
Density/(kg * m™*) 7 850
Young's modulus/GPa 209
Shaft diameter at bearing location/mm 39.8
Distance from left sensor to bearing/mm 26
Distance of two AMB/mm 312
Bearing
y

/E S Rotor

Fig. 2 Radial bearing

y, ) Sensor v, iSensor
Imbalance mass

TIIT NNSZInnnmm z
- I— sped
[sa)
Q 7727777773 N

i ] N Z I 7 3 =[N~

gL'J %, { Sensor Sensor | x, [H
Left AMB Right AMB
61.5 l 26 ! 84.5 . 81 94.5 26|, se5 |

Fig. 3 Locations of displacement sensors,

The experiment of adding imbalance excita-
tion is conducted to verify the results. The rotor
operates within a certain speed range from 1 200
r/min to 15 600 r/min. The experiment proce-
dures start with designing a feedback controller to
stabilize the rotor with AMBs, such as a PID con-
troller, inject sinusoidal excitation signal using a
signal generator, increase the excitation frequency
to 300 Hz, inspect the displacement signal in
LABVIEW, and verify whether the controller can
handle unbalance force with 300 Hz frequency.
After safety inspection, turn on the inverter and
adjust the motor speed. The displacement signals
are obtained by NI DAQ and saved every 600 r/

min from 1 200 r/min to 15 600 r/min using

magnetic bearings and imbalance planes, and test rotor geometry

LABVIEW interface. After Kaiser band pass fil-
tering and Fourier transform, the imbalance re-
sponse amplitude and phase are extracted from
the initial displacement data, which are used to i-
dentify the AMB parameters in terms of corre-

sponding frequency.

1.2 Basic principles of hybrid GA based on un-

balance response

The classical GA is a method of global opti-
mization, but the global algorithm lacks the local
search capability. Search operations are repeated
in the vicinity of the genetic optimal solution,
which results in low accuracy. Nelder-Mead sim-
plex method is a direct optimization algorithm

with powerful local search ability. But reasonable
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initial values should be provided to obtain the op-
timal solution. Besides, the supporting parame-
ters corresponding to different frequencies are
quite different in AMB system, which makes the
initial value selection more difficult. For the opti-
mization algorithm applied to the AMB support-
ting parameter identification, it is very important
to select a objective function that plays a critical
role in the final identification results. The follow-
ing process describes how to calculate the fitness
function.

Ref. [ 18] has already detailed the rotor mod-
eling, model updating and rectified model verifi-
cation. Here, the rectified rotor model is em-
ployed directly to calculate the AMB dynamic pa-

rameters. The Riccati Transfer Matrix Method is

adopted to calculate the displacement state vec-

0 — Lo’
mw® — K., —iC.w 0
le = .
0 —1l
0 0

where Ty, , T,, are the 4 X 4 identity matrix, T,,
is the zero matrix. I, is the polar moment of iner-
tia and I, the transverse moment of inertia. K.,
and C,, are the stiffness and damping coefficients
in x direction, K,, and C,, the stiffness and
damping coefficients in y direction.  represents
the rotating speed and m the mass of rotor. In
the same section, the relationship between the
force vector f; and displacement vector e; is de-
fined as
fi:S,'e;+Pi 4)
where S; is the transfer matrix of the ith section
and P; the force vector. According to the Egs. (2)
and (4), the recursive formula of §;, P; and the
inverse recursive formula of e; can be obtained as
S = I:THS + TZZ:I:‘[TZI S+ Tzz:ITI
P, = [Tnp + Frl — S [T21P+ Fc:li (5
e, =[T,S+ Tzz],ile;ﬂ — [Ty S+ T 7' [ TP+ F, |,
(6)
In the process of solving the displacement vec-
tors, at certain excitation frequency w;, the dis-
placement state vector e,; can be obtained at f{re-
quencies w; based on the state vector of the two
ends and Eq. (6).

tor. The state equations of the overall system are
defined as

Zy =TT, Ty %, @)
where T, ,T, .-+, Ty represent the transfer matrix
for the entire system. Z, represents the general-
ized state vector of initial state vector of the first
section (including generalized displacement and
force), Zy the generalized state vector of the last

section. The relation of the state vector Z;.; and

Z, is defined as

ZH»I_{f} = {Tll le} {f} +{Ff1 2
€] i T,, T,|, le; Fe(,

where the generalized load vector f is obtained
from the imbalance distribution and the vector e
the displacement state vector. F; is the external
force and F, the displacement vector. The matrix

T, is defined as

0 il, 0’
0 0
, 3
0 — Lo’
mw® — K,, —iC,w 0

The residual vectors calculated from experi-
ment and transfer matrix at {requency w; are de-
fined as

en(p) = |ACey) —Aley) |?
gr(p) = |Pley) — Pley) |? @)

where p is the correction vector. A (ep ) and

A(ey; ) are the unbalance response amplitude, and
P(ep ) and P(ey ) the unbalance response phase
vectors of the rotor movement obtained in experi-
ment and calculated through transfer matrix at
speed w;. The residual amplitude vector at fre-
quency w; is defined as g, (p) and gp (p) the resid-
ual phase vector. The fitness function is defined
as
MinR(p) ,R(p) =K, (jDes(p) + Kp(Gep(p)

s. t. Ly < p<U;g (8
where Ly and Ujp represent the upper and lower
bound of correction parameters, and K, (j) and
Kp (j) the weighting factors. The fitness function

of this model is the same as Eq. (8).
1.3 Residual optimization based on hybrid GA

The proposed hybrid GA has two main

processes, the global search and the local search,
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as shown in Fig. 4. Groups of candidates for opti-
mum solutions are determined by the global

search component.

Set and encode initial
support parameter
(K...K,,Cs,C,)
¥
Calculate unbalance
response of bearing
rotor system at a
certain frequency by
transfer matrix method

Measure unbalance
response at the
same frequency

from experiments

Find out new
support parameters
to decrease
residual based on
hybrid genetic
algorithm

[]
-—[ Fitness function R(p) |
[]

Global search based on
genetic algorithms:
Selection, crossover

and mutation
¥

Local optimization by

simplex method

Does it
satisfied the
termination
criterion,

v Y
Identified support

parameters
KK, ,C..,C,)

Fig. 4 AMB parameter identification process based on

hybrid GA

The modified simplex method is used in the
local search component. Hybrid GA combines the
advantages of both classical GA and simplex glob-
al local search, which greatly improves the accu-
racy of search process. The specific steps are

summarized as follows:

Step 1 Produce individuals using the genetic
uniform distribution method.
Step 2 Generate the initial solutions in pa-

rameter range and calculate the fitness function.

Step 3 Select candidate solutions by operat-
ing procedures of GA(selection, crossover, muta-
tion).

Step 4 Search the optimum solutions by the
simplex method.

Step 5
tion by the termination condition.
1.3.1 Global search (Steps 1—3)

Initial population should be randomly genera-
ted by selecting 100 individuals from all AMB pa-

Determine the final optimum solu-

rameters with binary encoding according to previ-

ous experience

How < H, < Hoo j—1.2, (9
where H,,, and H,. are the upper and lower
bounds of AMB parameters. Initial population
should be randomly generated by initial popula-
tion coding within the range. The initial popula-
tion size M = 100 and the maximum evolution
generation T = 200. The selected fitness func-
tion, which is the residual vector between test
and transfer matrix results, has a significant in-
fluence on the final calculation results. The
weighting factors K, (j) and Kp (j) are used to
describe each parameter as

f(x;) =R(p)=K,(jes(p) +Kpr(e(p)
(10)

A linear scaling approach is proposed to reduce
the amount of unnecessary calculations and to
prevent premature convergence. Select the high
fitness individuals by roulette wheel from AMB
parameter groups. The better code sequence are
chosed from random pair of groups. Then we ex-
change from a certain position of the two-bit code
string to improve the operation speed by single-
point method or two-point method. Non-uniform
mutation changes one of the parameters of based
on a non-uniform probability distribution. The
search strategy and parameters for GA are shown
in Table 2.

Table 2 Search strategy and parameters for GA

GA strategy Type or values

Population size 100

Selection type Roulette wheel

. One- and two-point
Crossover type and probability b
crossover, 50%

Mutation type Dynamic mutation

Maximum generation 200 or ending condition

1.3.2
Set initial values as the supporting parame-
ters identified by GA for Nelder-Mead simplex

Local search (Steps 4,5)

method and perform intensive search to determine
the highest and lowest points for a given vertex
function in simplex algorithm, and then form a
new simplex through a series of reflection, ex-
pansion and compression operations, thereby

gradually converge to the optimal solution, after-
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wards construct a N-dimensional simplex with
N +1 vertices. The function values of simplex
vertices are sorted to satisfy
S < fla?) <L - < f(h an
where 7n is the dimension of the parameter, % the
number of iterations. f(x") (i=1,2,+,n) re-
presents the point value of the fitness function
(R(p)) which determines the best point, the
worst point and the suboptimal point. The reflec-
tion, compression and expansion coefficients are
respectively defined as a,f,7 to satisfy
TP =2® 4 g (2® — 2P,
P =2 +pa — ) T
B =2® 4 y(al —2*)
where f(z/”) = min{ f(x&) . (P}, 2P re-

presents the center of simplex, f(z®) the func-

tion value at the center of simplex. Compared
with the conventional GA, hybrid GA is more
stable and accurate. To make up for poor post-
search capability and shortcomings of prematurity
of GA, termination criterion based on hybrid GA

is chosen as

ntl

1 oD e Y2 e
{77+1;|:f(T1 ) ]l(x )] < e (13)

where ¢ represents the accuracy set in advance. If

the fitness function is not satisfied with setting
accuracy, it returns to Step 1 and continues to
generate a new iteration of the supporting param-
eter calculation. If the fitness function meets the
accuracy requirements, the optimal solution will

be the supporting identification parameters.

2 Imbalance Response Measurement
and Identification of Bearing Pa-

rameters

The experimental unbalance responses are
collected from the flexible rotor-AMBs test rig
described in Section 1.1. The unbalance mass
used in the experiment is fixed with different
types M3 screw. The specifications are shown in
Table 3. The data logging
1 200 r/min to 15 600 r/min. The rotor displace-

starts from

ments and rotating speed information are saved

every 300 r/min for 10 s. Afterwards, the meas-

ured displacements go through unbalance signal
filtering using Kaiser band-pass filters and zero
phase digital filters to extract the steady state am-
plitude and phase information, which are shown
in Figs.5,6. x,, y; . x; and y, are the unbalance
responses values at each AMBs for two orthogo-

nal direction.

Table 3 Unbalanced mass and installation location in exper-

iment
Disk Mass/g Phase/(°)  Radius/mm
Left 0.785 0 0 15
Right 0.981 2 0 15
£ 4
<3
)
2
E
!
5 0 T A ek B A,
0 2 4 6 8 10 12 14 16

Rotating speed/(10°r * min™)
(a) Experimental amplitude information for x and y axes of Left AMB
200

+ X, %q:(%
100r on

0OF

’m#.’“mm -

-100 - Cooog, .,
Foby,
-200 5 . . . Lo

Phase/(°)

2 4 6 8 10 12 14 16
Rotating speed/(10°’r * min™)

(b) Experimental phase information for x and y axes of Left AMB
Fig. 5

Experimental amplitude and phase information

for x and y axes of Left AMB

m
g
o

o
n

Amplitude/10”
5

(=

4 6 8 10 12 14 16
Rotating speed/(10°r * min ™)

(a) Experimental amplitude information for x and y axes of Right AMB
200

100
ok
-100+

,200 o Q 1 1 1 1 1
0 2 4 6 8 100 12 14 16
Rotating speed/(10°r * min ")
(b) Experimental phase information for x and y axes of Right AMB

(=)
N

Phase/(°)

Fig. 6 Experimental amplitude and phase information

for x and y axes of Right AMB

The threaded holes are designed to add un-

balance mass near the supporting position, as



No. 2 Zhao Chen, et al. Identification of Magnetic Bearing Stiffness and Damping Based on--- 217

shown in Fig. 7.

According to the unbalance response ampli-
tude and phase obtained from the experiment, the
AMB supporting parameters are obtained using
hybrid GA. The identification process is shown in
Fig. 4 and the identified supporting parameters for
the two AMBs are shown in Figs. 8, 9.
K. . K, K. and K

2 Re

Here,
are the stiffness values

at each AMB for two orthogonal direction and

p o,

Fig. 7 Test rig rotor for measurements of im-
balance responses
=
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9 * o
8? 2t . bt
P e s e s aanansnn %
221 GRS Tk
€l . ., | °k
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Rotating speed/(10°r * min™")
(a) Stiffness coefficients of Left AMB

=
8
€8,
8w
on
1 -
£
g =3
0
A 0 2 4 6 8 10 12 14 16
Rotating speed/(10°r * min™")
(b) Damping coefficients of Left AMB
Fig.8 Stiffness and damping coefficients of Left
AMB
s 15
,§ ° + K.,
o 2
210k o
g8 og e
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% 0 2 4 6 8 100 12 14 16
Rotating speed/(10°r * min™)
- (a) Stiffness coefficients of Right AMB
5 3
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%0 M | [~} ° +* N
. 40 Thas ey o
+ + T,
gé 0ot ee® . . A ¥
A 0 2 4 6 8 100 12 14 16
Rotating speed/(10°r * min ")
(b) Damping coefficients of Right AMB
Fig. 9 Stiffness and damping coefficients of

Right AMB

C. C, , C,, and C,, the damping values at
each AMBs for two orthogonal direction.

As shown in Figs. 8,9, the stiffness and
damping identified from the right AMB is bigger
than that of the left one due to the different con-
trol gain of the PID controller in each channel.
The AMB stiffness coefficients increase with the
speed increasing and the damping parameters re-

main relatively steady with the speed increasing.

3 Verification by Simulation

To verify the identified results, we compare
with the results from experiment and simulation.
The process of verification by simulation is shown
in Fig. 10.

Amplitude and Compare with amplitude| |Analyze amplitude]
phase of displacementp>| between FEM file ™ of displacement
measured in test and test file using Nastran
Modify
call\glaﬁi?on the support Extract by
parameters Matlab
. Nastran
in BDF analysis
Stiffness and

BDF file is for
Nastran calculation FO6 result file

Fig. 10  Process of verification by simulation

damping in test

The rotor bearing model is built in the finite
element software MSC. Patran and the specific di-
mensions are shown as Fig. 4. The rotor is divid-
ed into 436 elements. For silicon steel and copper
sleeves, etc. on the shaft, use Lumped Mass
modules and plus lumped mass and rotational in-
ertia on shaft. Use bush element to simulate the
supporting bearing part. Modify the supporting
parameters in BDF file and load unbalance excita-
tion at the position corresponding to the unbal-

anced mass location of the test. And the finite el-

ement model of the rotor is shown in Fig. 11

yl\ 4 Xy

Bush

Fig. 11 Finite element model of rotor

During the verification, the identified param-

eters are employed in the rotor finite element
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model as stiffness and damping to calculate the
rotor unbalance responses. Because these identi-
fied stiffness and damping values vary along with
the rotating speed, the Matlab program is adopt-
ed as master software to control Nastran to calcu-
late the corresponding unbalance response from
1 200 r/min to 15 600 r/min by 600 r/min. Fi-
nally, the comparison between experimental and
simulated responses is shown in Figs. 12,13.
From Figs. 12,13, They can be seen that the
unbalance response calculated in finite element
model basically consistent with the experimental
This demonstrates that the identification

data.

method proposed in this paper is effective.

6
g + Simulation
g 4 O Experiment - IV sl
"g e888:
£2
g
< 0 BEEES o i
0 2 4 6 8 10 12 14 16
Rotating speed/(10°r * min™')
(a) x, position
g6 ; ;
b + Simulation
= O Experiment
3 4 ey
E 00
&2
Z
0

6 8 10 12 14 16
Rotating speed/(10°r * min)
(b) y, position

o
%
EEN

Fig. 12 Comparison between simulation and exper-

iment of Left AMB
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o
W

0 2 4 6 8 10 12 14 16
Rotating speed/(10°r * min")
(b) y, position

Comparison between simulation and the

experiment of Right AMB

4 Conclusions

An hybrid GA is proposed and employed to i-
dentify the AMB stiffness and damping coeffi-
cients. This identification algorithm combines
both merits of the genetic and simplex optimiza-
tion algorithm. The proposed method not only
can prevent premature of classical GA from fall-
ing into local optimum, but also can improve the
identification efficiency. The comparison between
experimental measurements and finite element
simulated response shows that the proposed iden-
tification algorithm in the paper can effectively i-

dentify the supporting parameters of AMBs.
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