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Abstract: The key to failure prevention for aero-engine lies in performance prediction and the exhaust gas tempera-
ture margin (EGTM) is used as the most important degradation parameter to obtain the operating performance of
the aero-engine. Because of the complex environment interference, EGTM always has strong randomness, and the
state space based degradation model can identify the noisy observation from the true degradation state, which is
more close to the actual situations. Therefore, a state space model based on EGTM is established to describe the
degradation path and predict the remaining useful life (RUL). As one of the most effective methods for both linear
state estimation and parameter estimation, Kalman filter (KF) is applied. Firstly, with EGTM degradation data,
state space model approach is used to set up a state space model for aero-engine. Secondly., RUL of aero-engine is
analyzed, and expected RUL and distribution of RUL are determined. Finally, the sate space model and KF algo-
rithm are applied to an example of CFM-56 aero-engine. The expected RUL is predicted, and corresponding proba-
bility density distribution (PDF) and cumulative distribution function (CDF) are given. The result indicates that
the accuracy of RUL prediction reaches 7. 76 % ahead 580 flight cycles (FC), which is more accurate than linear re-
gression, and therefore shows the validity and rationality of the proposed method.
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0 Introduction

According to the statistics data, the mainte-
nance cost of the aero-engine accounts for more
than 30% of the total operating cost of airlines,
which reveals much controllable margint. It is
widely proven that prognostics and health man-
agement (PHM) can reduce the risk of cata-
strophic system failure as well as the maintenance
cost, compared with traditional maintenance
techniques. The remaining useful life (RUL) pre-
diction is a key technique of PHM, because it
provides the base for aero-engine maintenance
plans through predicting RUL of aero-engine ac-
curately, reducing maintenance costs and lower-

(23] As the most im-

ing the probability of risk
portant measure of aero-engine health, the ex-

haust gas temperature margin (EGTM) is an ef-
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fective approach to identify deterioration of aero-
engine. EGTM can not only indicate an abnormal
operation but also predict RUL without the need
to stop the aero-engine and perform expensive full
inspection.

There are several studies on the subject of
RUL prediction of the aero-engine. Garcia et
al. ™ described a hybrid PSO-SVM-based model
for the prediction of RUL of aircraft engines. Ma-
linowski'” presented an approach, based on
shapelet extraction, to estimate RUL, and evalu-
ated it by a case study turbofan engines. Li* de-
scribed a prognostic approach to estimate RUL of
gas turbine engines based on gas path analysis.
Zaidan et al.'™ selected a Bayesian hierarchical
model to utilize fleet data from multiple assets to
perform probabilistic estimation of RUL. EGTM

was taken as a measure of the engine health to
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predict RUL of the aero-engine in Refs. [7,87].

Aero-engine has the character of complexity
and high reliability, so it is difficult to obtain suf-
ficient failure data within a short time and set up
physical model. However, the data-driven meth-
od only depends on applicable historical data and
statistical models, which makes the method more
applicable to predict the RUL of aero-engine. So
based on the existing research, a life prediction
method for aero- engine is proposed in this work.
Firstly, the state space model of aero-engine will
be established. Secondly, RUL of aero-engine is
analyzed, and expected RUL and RUL distribu-
tion are determined. Finally, the sate space mod-
el and KF algorithm are applied to an example of
CFM-56 aero-engine, the expected RUL is predic-
ted, and corresponding probability density func-
tion (PDF) and cumulative distribution function
(CDF) are given.

1 Sate Space Model Approach for
Aero-Engines

EGTM is time series data to measure the de-
gree of performance deteriorations for aero-en-
gine, and the sate space model approach (SSMA)
offers a very general and powerful framework to
operate with time series data. SSMA infers best
historical estimates and forecast performance
trends based on historical data. So RUL predic-
tion for aero-engine will be studied with SSMA
based on EGTM.

1.1 State space model

State space model differentiates state varia-
bles and observed variables to establish models,
without loss of generality. Considering the fol-
lowing state space model

v = fola,s0) D
x, =gy(x yw,)
where f,( » ) is the observation equation, which
describes the mapping relationship between sys-
tem state variables x, and observed variables vy, ;
g( ) the state equation, describing the evolution
of system states with time; 0 the model parame-

ter; and v, and w, are the observation noise and

the process noise, respectively

For aero-engine, in this work, the observed

variable y, is EGTM, which is defined as

EGTM =EGT., — EGT. (2)
where EGT,, is the red line temperature of aero-
engine provided by manufacturers and EGT. the
exhaust gas temperature of the engine with full
power take-off in standard conditions.

It is provided that actual EGTM observed at
in-service time ¢ is a function of the aero-engine
unobservable degradation state x,

y, =EGTM, =z, + v, (3)
where v, is the observation noise, including errors
caused by model error, sensor noise and other
factors. Let us suppose that observation noise is
subject to Gaussian distribution, which means
v,~N(0,V), where variance V need to be esti-
mated.

With regard to a state space model, its state
sequence x,,r 1s often supposed to be first-order
Markov chain, which means that the current state
only depends on the system state at the previous
moment and the current observation y, only de-
pends on the current system state x,. The struc-

ture diagram of state space model is shown as

Fig. 1.
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Fig. 1 State space model

Observed values

1.2 Bayesian state estimation

Bayesian state estimation can obtain posterior
probability distribution, including all the statisti-
cal information of state variables through two-
step iteration of prediction and update. Some oth-
er statistical information like mean and variance
can be obtained through posterior probability dis-
tribution. Given aero-engine observation sequence
y1..» Bayesian state estimation utilizes all the cur-
rent observation information to obtain the poste-
rior distribution # (x, | y1.,) of unknown state.

Suppose the initial aero-engine state at time =20
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is xo ~n(x,), then for any in-service time t_>
1:9] .

(1) Given the aero-engine state posterior dis-
tribution 7(x,—, | y;,,—1) at time t—1, the one-step

prediction of aero-engine state variable is
7[(11 | yl;tfl) :JTE(.Z', ‘ ~Tzfl)7r(1'rfl | yl:r—l)dxzfl
4)

The one-step prediction of aero-engine obser-

vation variable is
(v, | yi.1) :Jﬂ(y, | 2Dz, | y1.01)dx, (5)

Given the actual observations at time ¢, we
can obtain posterior distribution of aero-engine
state at time ¢ in accordance with Bayesian theo-
rem

7T(y1 ‘ 11)7['(11 ‘ yl;zfl)

(6)
ﬂ(yz ‘ yl;zfl)

wlx, | yi.0) =

Eqgs. (4)—(6) provide the optimal state esti-

mation under Bayesian theory framework.
1.3 State prediction

Given that state posterior distribution at in-
service time ¢ is #(x, | y1.,) » the probability distri-
bution of aero-engine state x,., after k-step pre-

diction ist%

(2., ‘ Vi) :JTC(LA& ‘ VIR Y J (o ‘

yi,0dx (B> 1) D)
Given x,~N(q,(0),R,(0)), so at time (¢+

k), the state x,., is
x4 ~ Na, (k) R, (k)) &
where a, (k) =G a,(k—1), R, (k) =G, R, (k—

DG AW,

Similar to Bayesian state estimation, suppose
the joint posterior distribution x(x¢,,s0]| y1..) of
state and parameter at time ¢ is approximated by a

set of particles {(x¢,,0,)” }X,, then the set of

particles {x{?, }, which approximates the state
prediction distribution 7 (x,;, | y1..) at time ¢+ £k
can be obtained by the following algorithm:
k-step state prediction
For j=1:k
For i=1, -+, N, sample 22, ~n(x,; | 22,1,
l%i) ), make 1'jjz)+jé(l‘sz)fj*l vl'z(ir)j).

The state prediction distribution at time t+#4

can be approximated by

N
~ 1
(x| yi) ~ (x| yi) ZNZ&-;; (2

i=1

D)

After obtaining new observation informa-
tion, Bayesian state estimation would firstly up-
date the posterior distribution of state and param-
eter by absorbing new observation information,
and then update state prediction distribution. The
prediction can be described and quantified by

probability distribution.

2 RUL Prediction Model for Aero-

engines

Through the analysis above, the k-step pre-
dictive state x,+, can be predicted based on the
historical data y,,,,» but it is obvious that x,4, is
uncertainty, and the value and trends of x,., de-
termines RUL, so in fact RUL is also not a defi-
nite value. In aero-engine engineering, RUL has
two kinds of expressions: (1) Expected RUL the
mean of RUL of failure; (2) RUL distribution.
Since aero-engine has high reliability requirements
and failures need to be avoided, it is difficult to
manage aero-engine in practice merely based on
expected RUL, and the failure probability at any
time in the future is useful, so RUL distribution
is a stronger guidance to management of aero-en-
gine,

2.1 Expected RUL

As mentioned above, generally, x,., decrea-
ses with in-service time. If x,,, reaches 0, it
means that the performance degradation of the
aero-engine is very serious, and the aero-engine
will always be removed. So the expected RUL is
equal to & from current time ¢ to removal time ¢+
k, and we can get the RUL at time ¢

RUL, = {k| 2., =0} (10)
2.2 RUL distribution

The aero-engine maybe fail at any time, and
the probabilities of corresponding failure are dif-
ferent. In order to avoid the failure, the failure
probability of the aero-engine at time ¢+ % should
be estimated, and make F, (k) represent the fail-

ure probability. It is assumed that the failure
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time is T, and without loss of generality, for a
monotone increasing degradation process with up-
per bound, we can get

F (k) =Pt[T<t+k]=Prlz,, <0]=
J Vﬁ(«l‘,f/\))dl”/ﬂv (11)

where 7(x,+,) represents aero-engine degradation
state distribution at time ¢+ k.

According to Eq. (11), we can get CDF and
PDF as follows

"0 —a, r
F,(/z):J Hrr(al‘,/&)dfﬂr,\,s{)(\/l%) (12)
by~ EG) L (- (a, (k)
i IE Jax JR ) 2R, (k)
(13)

3 Case Study

Fig. 2 shows the observed EGTM data col-
lected during the whole in-service life of one
CFM56-5B engine of certain airlines. The engine
was removed after 2080 FC because of perform-

ance degradation.

Observed EGTM

400 800 1200 1600 2000

Flight cycle

Fig. 2 Observed EGTM data of the CFM56-5B engine

3.1 Establishment of state space model

Set observation time as T and observed
EGMT as X, the correlation coefficient of T and
X st

pPrx — g1x (14)

where the covariance of two random variables T
and X means pr and py, respectively, is given by
orx =E(TX) — prpex or =E(T?) —Iu%‘,azx =

E(X*) — ik

The correlation coefficient pry satisfies the

inequality —1<{prxy <<1. It assumes a value of zero
when ¢rx =0, where there is an exact linear de-
pendency, say pry = £ 1.

Based on the observed EGTM data, we can
get prx = —0. 941 6, so the performance degrada-
tion process can approximately be regarded as lin-
ear degradation shown in Fig. 3. Therefore, we a-
dopt a linear growth model as state equations to
describe the aero-engine degradation path &

w,., ~ NO,W,)
(15)
w,., ~ NO,W,)  (16)

where z, is the actual degradation state, g, the

T, =20 T per T w,,
f = e W

rate of change for degradation state; w,., and w,,,
are the process noises subject to Gaussian distri-
bution; and W, and W, are unknown and to be es-
timated. So we obtained a Gaussian linear state
space model to describe aero-engine performance
degradation based on EGTM observation sequence
as follows

jY,ZF,XI+"U, v, ~ N0,V)

X, =GX., +w, w, ~ NO,W

Observed EGTM
Fitting line
correlation coefficient = —0.941 6

500 1000 1500 2 000

Flight cycle

Fig. 3 Fitting line of observed EGTM data

x, W, 0
where X, = , Y, =EGTM, , W= ,
. 0o W,

G*1 ! F,=[1 O
1{0 1:[9 z*[ ]

3.2 [Estimation of parameters

Given the EGTM observation sequence of
aero-engine and the state space mode above, the
performance degradation state can be estimated

and its trend can be predicted in accordance with
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Bayesian reasoning. The statistical analysis soft-
ware R and its software package dlm''?* are ap-
plied to estimate the aero-engine performance
degradation state and the unknown model param-
eters based on the historical EGTM data.

For example, based on EGTM data of histor-
ical 1 000 FC, firstly, the variance V, W, and W,
can be estimated with function dimMLE as fol-
lows

V=3.90,W, =0.116,W,=1.165 X 10’

Then, with function dlmFilter, the corre-
sponding parameters can be obtained:
(000 | Yiion) = N(20.55,0.0612%) y7rCpuy o0 |
Yi.1000) =N(—0.022,0.825%)
3.3 RUL prediction

After estimating the model parameters, with
the function dlmForecast, the predictive distribu-
tion of degradation state after the period of £ can
be obtained. For example, at &= 400 and 800,
the corresponding parameter of aero-engine, as
shown in Fig. 4, are as follows

@000 (400) =11, 81,R; oy (400) =2, 93*
1 000+100 ~ N(11.81,2.93%)

—11.81
2.93

ai 000 (800) =3. 07 le 000 (800) =4. 627
X1 0004800 ~ IN(3.07,4. 62%)

—3.07
4.62

The blue curves in Fig. 4 are PDF at £=400

Floo()(400):g0( ):2.78><10 >

Fm,<soo>:¢( ):0.253 2

and 800, respectively, and the sizes of red shad-
ows indicates CDF, such as F; 5, (400) and F; 400
(800). From Fig. 4, the state x; gp0+040 1S equal to
zero, so RUL;,o = 940 FC, and the actual
RUL, 4 1s 2 080—1 000=1 080 FC, so the pre-
diction error is 12, 96%. And if the traditional
linear regression is adopted to predict the RUL as
shown in Fig. 5, the expected RUL,; o, =1 899 —
1 000=2899 FC, so the corresponding prediction
error is 16, 76 %.

With the increase of aero-engine flight cy-
cles, EGTM is more and more close to zero, so
the accuracy of prediction will be getting higher
and higher. For example, when the aero-engine

reaches 1 500 FC, the predicted state after 300

and 500 FC will be shown in Fig. 6. And the ex-
pected RUL, 50 is 625 FC, and the actual RUL, 5,
is 580 FC, so the prediction error is 7. 76%. So
the accuracy of RUL prediction increases with
more observed EGTM data. And if the traditional
linear regression is adopted to predict the RUL as
shown in Fig. 7, the expected RUL,;,, =2 028 —
1 500=528 FC, so the corresponding prediction
error is 9. 00%.

Engine 1# Observed data

Engine 1# Filted data

Engine 1# Predicted data

Engine 1# 95% confidence interval

PDF at ~=800

CDF at /=800

PDF at k=400 — /

CDF~0 at k=400—

500 1000 1500 2000 2500
Flight cycle

Fig. 4  State estimation and prediction (1 000 FC)

with SSMA

Observed EGTM
Fitting line

1899 FC

800 1200 1600 2000

Flight cycle

Fig. 5  State estimation and prediction (1 000 FC)

with linear regression

Fig. 8 describes the distributions of RUL =
200 FC, 400 FC, and 800 FC at in-service time
t=1 000 FC and 1 500 FC, respectively. And it
can be seen that the variances of distribution are
more and more obvious as RUL increases, which
is consistent with the actual situation that the
more steps of prediction is, the more uncertainty
of prediction will be. Similarly, it can be seen
that the prediction is more accurate as close to the

time when the engine is removed.
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Engine 1# Observed data

Engine 1# Filted data

Engine 1# Predicted data

Engine 1# 95% confidence interval

PDF at k=300
PDF at k=500

CDF=0.0012 at /=300

CDF=0.197 at k=500
500 1000 1500 2000 2500

Flight cycles
Fig. 6  State estimation and prediction (1 500 FC)
with SSMA

Observed EGTM
Fitting line

2 028FC

400 800 1200 1600 2000
Flight cycles

Otate estimation and prediction

with linear regression

00 FCRUL=200FC
00 FCRUL=500 FC
00 FCRUL=800 FC

200 400 600 800 1000 1200
RUL flight cycle
(a) =1 000 FC

=1 500 FCRUL=200 FC
t=1500 FCRUL=500 FC
=1 500 FCRUL=800 FC

200 400 600 800 1000 1200
RUL flight cycle
(b) =1 500 FC
PDF of aero-engine RUL at time t=1 000 FC
and t=1 500 FC

Through the analysis above, we can find that
CDF will increase with aero-engine flight cycles,
and the CDF of aero-engine from the time
t=1 000 FC and 1 =1 500 FC are described in
Fig. 9, and the right part of Fig. 9 is a zoom of the
left from £=0 to k=420. The CDF from r=1 500
FC is more than the CDF from ¢t=1 000 FC,
which is consistent with the actual situation that
when the steps of prediction is the same, the
more the in-service life is, the higher the predic-

tion risk will be.

CDF from =1 500
CDFfrom =1 000

Zoom inright
figure

200 400 600 800 10001200
k Flight cycles
(a) =1 000 FC

CDF from =1 500
CDF from =1 000

000 50 100150 200 250 300 350 400
k Flight cycles

(b) =1 500 FC
CDF of aero-engine from the time r=1 000 FC
and =1 500 FC

4 Conclusions

We present our studies on RUL prediction
method for aero-engine, and the conclusions are
as follows:

(1) The state space model approach is estab-
lished, including parameters such as EGTM and
degradation rate, etc, which can better reflect the
performance degradation process of aero-engine.

(2) The accuracy of RUL prediction increa-
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ses with more observed EGTM data through KF,
and it is more accurate than traditional linear re-
gression.

(3) Real-time update of performance degra-
dation model parameters can be achieved through
Bayesian method. The more steps the prediction
conducts, the more uncertainty and risk it will

face.
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