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Abstract: We studied carrier landing robust control based on longitudinal decoupling. Firstly, due to the relative
strong coupling between the tangential and the normal directions, the height and the velocity channels were decou-
pled by using the exact linearization method, so that controllers for the two channels could be designed seperately.
In the height control, recursive dynamic surface was used to accelerate the convergence of the height control and e-
liminate "the explosion of complexity”. The RBF neural network was designed by using the minimum learning pa-
rameter method to compensate the uncertainty. A kind of surface with nonsingular fast terminal sliding mode and
its reaching law were developed to ensure finite time convergence and to avoid singularity. The controller for the
velocity was designed by using super-twisting second-order sliding mode control. The stability of the proposed sys-
tem was validated by Lyapunov method. The results showed that the Levant’s robust differential observer was im-
proved and used for the observation of the required higher order differential of signals in the controller. The re-
sponse of aircraft carrier landing under the complex disturbance is simulated and the results verified the approach.
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0 Introduction

Carrier landing is the most difficult and dan-
gerous aircraft flight phase of all. Aircraft work
in high angle of attack(AOA) and low speed dur-
ing carrier landing, which is difficult to manipu-
late and usually disturbed by air wake and their
own dynamic perturbation. This phase requires
some very high conditions, like response capabili-
ty., robust performance, and touchdown accura-
cy. Therefore, many methods have been pro-
posed for carrier landing control law. Subrah-
manyam” and Yu™ designed F/A-18A automatic
carrier landing system using H-infinity control,
and obtained small error of track. The model ref-
erence was combined with other methods for au-

B4 Intelligent control approa-

tomatic landing
ches were also applied to landing control, like
fuzzy logic and neural network method™, adap-
tive fuzzy neural network method™, and direct a-
daptive neural method™. Zhu adopted nonlinear

dynamic inversion and sliding mode control to de-
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sign longitudinal carrier landing system'. The
sliding mode control could provide landing control

system strongly robustness for disturbance™®'™.

11]

Yang''" proposed a robust fault-tolerant control
scheme considering input saturation. Fang™? de-
signed fault tolerant automatic landing controller
which presented robustness against disturbances
and reliable against actuator stuck faults. Zhen
summarized the research on the development of
carrier landing guidance and control.

We were to design a robust carrier landing
controller, considering the external disturbance,
the nonlinear dynamics uncertainty and the cou-
pling in carrier landing. The tangential direction
and normal direction (or height and velocity chan-
nels) have relatively strong coupling, because @
landing flight is in the backside area of the drag-
velocity curve, causing the tangential and normal
direction to affect each other; and @ the thrust
affects not only the velocity, but also flight path

angle in carrier landing because of high angle of
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attack. Therefore, the longitudinal dynamics was
decoupled by using the exact linearization meth-
od, so that controllers for the height and the ve-
locity channels could be designed seperately.

The design of the height controller involved
the method of recursive dynamic surface control
in which the recursive design could speed up
height error convergence and the dynamic surface
control (DSC) technique could eliminate the "ex-
plosion of complexity”. The radial basis function
(RBF) neural network was used to estimate the
combined interference, and the minimum learning
parameter method was employed to rapidly adjust
parameters because of its transformation from
multi-parameter adjustment into one-parameter

t1* . A non-singular fast terminal slid-

adjustmen
ing mode surface and a nonsingular fast terminal
sliding mode reaching law were designed at last.

The design of velocity controller employed
the second-order sliding mode control, not only to
ensure the need for robust control, but also to
greatly reduce the control surface’s chattering, so
that the velocity of the landing can be held in trim
value in landing.

Differential observer is necessary for estima-
ting the various order derivatives of the height
and the velocity signals to implement controller,
so the Levant’s robust differential observer was
used to observe those. The homogeneous terms
were added to the original structure to improve
the Levant s robust differential observer, for

speeding up its dynamics.
1 Model Decoupling

The longitudinal dynamics of carrier-based
aircraft landing is as follows

_ TcosCa+0r) —D
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where h is the height, V the velocity , ¥ the flight
path angle,  the angle of attack, ¢ the pitch angle
rate, 0r the engine installation angle, M, the aero-
dynamic moment, §8 the throttle lever displace-
ment, f. the throttle lever displacement com-
mand,and m and I,, are the mass and the rotation
inertia of aircraft,respectively.

The relative rank of the longitudinal dynam-
ics in Eq. (1) is 7. And the input variables can be
obtained by calculating the fourth derivative of
the height, and the third derivative of the veloci-
ty., so the total order of the derivatives is 7.
Therefore, the system's relative rank is equal to
the total order of derivatives, and the exact lin-
earization can be used for Eq. (1),

The influence of altitude and pitch rate on
aerodynamics is very small in landing case, thus
their partial derivatives in the Jacobian matrix are
very small, and can be ignored. Define vector X =
[(V,7v.a,p]".

The third-order derivative of velocity is cal-
culated as

JV: Tcos(a+6r) — D

— gsiny = [, (X)
m

V=w,X/m
1 V=(X+X"wX)/m
(2)
The fourth-order derivative of height is
h=Vycosy+V
Jhm =Vsiny + 3Vycosy + 3Vycosy — 3
1 3Vy?siny — 3Vyysiny — Vi’ cosy +

Vy cosy
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Eq. (5) can be transformed into a triangular

standard type as shown in Egs. (6), (7), where
the complex disturbance caused by model pertur-
bation and input disturbance is taken into account
Zyi =y, + Axy
JJ‘sz =xv; T Axw
) (6)
Ty = fv +u + Az,
Lll =gup + g120.
Zw =Zniy + Az 1=1,2,3
T =fi+u + Az 7
Uy = g f 1 820,
The RBF neural network is used to estimate

the uncertainties. The algorithm is as

& (x) =exp(— HIZ%"") j=1,,m
Take f(X) for example, suppose
F(X) =WTe(x) +¢

where ¢ is approximation error.
The RBF neural network’s output is
F(X) =W"h(x)
And define W=W—Ww .

In order to accelerate the adjust of neural
network for real-time control, so the minimum
learning parameter method can be adopted, which
the adjustment of the weight vector Wcan be con-

vert into the adjustment of the weight vector's 2-
2 [14]

2 Height Control Design

The controller for the height is based on Eq.
(7.

Step 1
ey =x, —Iyg » where x4 1s the height command
— 24 31=1,2,3. Define

=e¢,,. The first-order deriv-

Define the dynamic surface variable

signal. And define e, =x

the dynamic surface s,

ative of s,is
S ‘ . R—
ST =T T Az — Xpar ATy —Wmém + e (8)
Virtual control variable is designed as

— 1 A al\]

_ . T .
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In order to avoid the "explosion of complexi-

‘5/,1

ty” caused by repeated derivation of x,, » the first-

order low-pass filter is used

ToTioa + Tioa =Tnr s Toa (0) =24, (0) (10)
The filtering error
V2 = Tn2a — X (1D

Substituting Egs. (9),(11) into Eq. (8), we
can obtain

\1 = €2 + V2 — 0. 55150/,15;1 éhl - 13151 -

0.5ais/q + Wik +en (12

Step 2 In order to further reduce the error,
the recursive sliding mode method is used to de-
fine the dynamic surface™'
So =C18] T e € = T — Tnza

sy =cy §; + (Asy + Axyy) + 20 — 2420
& — /T ’
$1 = X2 + Wmém — Thid

Ass = ¢ Gy — 1) (13)
Virtual control variable
— - 1 Zs .
Xz = —C1 81 — 2 5)501‘1511 Eio — kysy — 612_77\22 + Zi2a
‘ €2 < as (14)

The first-order low pass filter is adopted
T?ﬂ’%xd + Znza :;/.3.1'/134(0) :;/13(0) (15)
The filtering error

V3 = Xpzd T Xh3 (16)
Step 3  Define recursive sliding surface
€3 = T3 — Tpsa e85 = 25 T ey

The virtual control variable is obtained

2
— - 1 - asss

Xpy — 7 Co S2 — ?-53501‘351136/,3 —kysy — 277 +I/13d
3

an
The first-order low pass filter is adopted
T4~7.Fh4¢1 + Zpa :;C/A,x/zu/(o) :;/14(0) (18

An adaptive law is given as follows

Ar o ~
P — l*ﬁ /z%élzk K«'ngDk
kr > 0,k=1,2,3 (19)

Define a Lyapunov function as

Vs E +Z”"+ZL A =0

20
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Theorem 1  For the above closed-loop sub-
system of step 1, 2 and 3, if V)15, << 2y and e, =0,
all the signals are semi-globally uniformly bound-
ed, errors are convergent, the signals the errors
can be arbitrarily small by adjusting the parame-
ters of the controller.

Proof From Eqgs. (10), (11), (15), (16),
we can get
— Vi - — Y

— X —
T T

3, — B, i=2.3,402D)
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Then,

From the Young's inequality, we can get
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Similarly, we can obtain
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We can get
V/leS <* 2/1V/1123 +Q (25
And when it is taken that x > Q/ZX , and

Viizs << 0, subsystem of steps 1, 2 and 3 is stable
And if V1,5 (0) <
Vines (1) <<y . From Egs. (25)

and convergent. < y »we can get

V/)lZS <

Q + (V/,123 (O) - Q)672M
2, 24

Therefore, all signals are bounded. And
when ¢t — oo, it can be gotten that V,1,; — Q/2y .
By adjusting the parameters, V,;; can be conver-
gent to any small positive number.

Step 4 Define a recursive sliding surface:
€y = XTps = Lhad sS4 — €4
The traditional sliding mode surface can only

So a

kind of nonsingular terminal sliding mode surface

make error gradually convergent to zero.

is designed to lead error converge to zero in finite

time and to avoid the singularity.
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Define a kind of non-singular terminal sliding
mode where the term ¢’ is added to the structure
of the ordinary nonsingular terminal sliding mode
surface

si =0+ Bio’ o 1<<I<2im>1

U:J@(f)dt (26)

Remark: Since the differential equation
oo + o =0 1<<1<2;m>1
is convergent, Eqs. (26) can be used as a sliding
mode surface
si=e + Pils e, + Bomel e, = e + Bl e, +
e me"  (Axp + o+ s — Tpig)
The height controller also includes a kind of

sliding surface reaching law, as follows

—1 - L
us =W[@1 +Bime" ey + (Bsy +Bisi)T] —

Wﬁém - f/z +~'T1,4d T day Sgn(54)
leo [<<as1<<r<<2;p>r;p > 0;
1=1,2,3,4 27

Taking an adaptive law

W, = A, B2ms el En (28)
Proof of stability:
Define a Lyapunov function

1, 1 G
V,| == 3821 + EWL W/,,l (29)

V, =55+ Lwiw, —
Ay

s (— (Bysy + Bust )%) + 5. mel ! .
(— WT&M + e, —aysgn (s,)) + %Wﬁ ‘5V/z4
"

When taking m =p1 /027 =ps/pi s =ps/ps s
where p;is odd number, i =1,--,6,we can get
Ve < si(— Bus, +BsTY <0 (30)
Then it can be known that the subsystem of
step 4 is convergent.
And since W — 0,W — 0, we can obtain
5185, <— 5, (Bysy + BusiHV? <0
s Basy T Bis )P <0 (31
From Eq. (31), it can be seen that the sub-
system of step 4 is convergent in finite time.
In conclusion, the subsystem 4 is convergent
to s, =0 in finite time in the effect of controller in
Egs. (27) and the adaptive law. And according to

Theorem 1, the subsystems of steps 1, 2 and 3

converge, all the signals are bounded, and the er-
ror can be arbitrarily small by adjusting the pa-
rameters. And the saturation function can be
used in place of the symbolic function "sgn” in the

above controller.

3 Velocity Control Design

The velocity controller is designed based on
Egs. (6).

Definee, =V —V, .

Since the velocity is instable without control
in carrier landing, the super-twisting second-or-
der sliding mode control is applied to the control/
hold of the velocity™™#,

Define a sliding mode surface as follows

sy = ey - asey +a ey
Sy =asey +ajey + fv +us + Axys +
Ay, + ATy, — Foa

The controller is

Uy = Uy T+ Uy,
fv+V,—Wigy
U =—p | sy [PsgnCsy) + =
z =—ksgn(sy) (32)

Taking an adaptive law as follows

Uy — A€y — A€y —

W =Avsvéy (33)
Proof of stability
Vo= st WiWL (34)
Ve < sv(— |sv | V2 sgn(sy) +2) < 0
Wy >0 (35)
Therefore, we can get
sy <— 7 ‘ sy ‘ V2sgn(sy) + = (36)

According to the comparison principle and
conclusions in Refs. [17—187], we know that the
sliding mode surface converge is in finite time.

Then we can get the control law of aircraft’s

throttle and elevator
o P I
0. 821 822 U

4 Differential Observer Design

To complete the controller, we need to the
necessary order derivatives of the height and the

velocity, but they will magnify noise to compute
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derivatives directly. However, the Levant's ro-

18] is able to guarantee

bust differential observer
the robustness and control precision without mag-
nifying noise. In order to accelerate its dynamics,
the Levant' s robust differential observer is im-

proved by adding homogeneous terms — w;e , as

follows
20 =050, = Fy (2o — f(f)) + 2
L.ZI —V; +U; :FI (Z,' — Vi1 ) + Zi
2, =F,(z, —v, 1)
1 n—i
F.(e) =—wLw |e|nTisgn(e) — we

0<<d, <lzi=1,-- (38)

Let f(t) =h(t),n=3, then the necessary or-

n—1

der derivatives of height signal can be obtained u-
sing Eq. (38). Let f(r) =V (¢),n =2, then the

necessary order derivatives of velocity signal can

be Obm ;ucd c;thcl. 300
g
5 05 E 200t
t: -
3 5
fo 0.0F :",-:’ 100
O
jant
035 20 40 60 % 20 40 60
Time /s Time /s
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: % 8.6f
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8 685 5
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68'00 20 40 60 8'20 20 40 60
Time / s Time /s
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Fig. 1

When there was an initial 1 m height devia-
tion at the beginning of the simulation, the system
responsed quickly to correct the deviation, and
the height error was eliminated to zero at time of
3 s. Because of the existence of complex disturb-
ance described above, the height and other states
were changing near trim states, in a small bound
after the time of 3 s. At the time of 43. 8 s, the
air wake began to affect aircraft, causing it to
firstly fly up and then down. The height error
was in bounded 0. 6 m in the last 12. 5 s, and the

height error in the ideal landing point was only

Elevator / (°)

Pitch angle / (°)

5 Simulation

In order to verify the feasibility of the pro-
posed controllers, the simulation of carrier land-
ing was built. Simulation time was set as 56. 3 s.
The height initial deviation of 1 m was given at
the beginning, and the air wake interference was
encountered in the last 12.5 s. The aircraft’s aer-
odynamic parameters were perturbed by a same
proportion of 50%. Az, and Axv; were the sum of
the white noise with a power of 0. 001, and sine
signal with an amplitude of 0. 01 and frequency
1 rad/s. Az Az s Az s Axp s Axyy s ATy,
all sine signals with an amplitude of 0. 001, and a

all

were

frequency 1 rad/s. Filter' time constants were
turned to 0. 004. The trim states were; V =
69.3 m/s, « =8.5°, §=5", elevator §.=—3.17°,
throttle 8 = 43%. The simulation results are

shown in Fig. 1.

0 100
_1 L § O | ¥ Y ’ ' v
_2 L é)
g -100f
_3 - ﬁ
_4 I 1 — L 1
0 20 40 60 2000 20 40 60
Time /s Time /s
(c) Elevator (d) Throttle
5.4 ~ 04
52F s 021
4.8} %;o -0.2
<
= _
4'60 20 40 60 g:j 0'40 20 40 60
Time /s Time / s
(g) Pitch angle (h) Pitch angle rate

System response in carrier landing glide phase(with complex disturbance)

within 0.1 m, less than 0. 7 m required for the
carrier landing criterion. In the whole process,
the changes of states ( like velocity, AOA and so
on), and the changes of control surfaces were all
in a small and accepted area. Therefore, it can be
considered that the controller can achieve robust
performance and guidance precise in carrier land-

ing.
6 Conclusions

The carrier landing robust and the self-adap-

tive control have been studied, considering inter-
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nal uncertainties and external disturbances of the
nonlinear dynamics of carrier-based aircraft. The-
ories and simulations verify the approach. And
the following conclusions are obtained.

(1) Theexact linearization method is able to
decouple the carrier-based aircraft dynamics mod-
el. Robust control method is required to cancel
the uncertain factors in the model, so that the ef-
fectiveness of the exact linearization can be en-
sured.

(2) The minimal learning parameter method
can obviously improve the ability of estimating
the uncertainties of the RBF neural networks,
and the problem of ” dimensionality curse” is
solved.

(3) The combination of recursive dynamic
surface and nonsingular fast terminal sliding
mode can improve the convergence rate.

(4) Homogeneous items result in better con-
vergence performance of Levant's robust differen-

tiator.
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