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Abstract; Disturbance rejection algorithm based on model reference adaptive control (MRAC) augmentation is in-

vestigated for uncertain turbulence disturbances. A stable adaptive control scheme is developed based on lower di-

agonal upper (LDU) decomposition of the high frequency gain matrix, which ensures closed-loop stability and as-

ymptotic output tracking. Under the proposed control techniques, the bounded stability is achieved and the con-

troller is able to remain within tight bounds on the matched and unmatched uncertainties. Finally, simulation stud-

ies of a linearized lateral-directional dynamics model are conducted to demonstrate the performance of the adaptive

scheme.
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0 Introduction

Several disturbance attenuation and rejection
approaches have been established during the past
decades. The H.. control technique which has ad-
vantages over classical ones is an effective dis-
turbance attenuation method and has already been

successfully applied in practice’.

However, the
robustness against disturbance achieved by the
H.. control approach is guaranteed at the price of
degraded nominal performance and the disturb-
ance is assumed to have finite energy. Slide mode
control is an effective robust control algorithm
since it is insensitive to model uncertainties, ex-
ternal disturbances and parameter variations-*,
In Ref. [5], a method that combines H.. and inte-
gral sliding mode control was proposed. The
main idea is to choose such a projection matrix,
ensuring that unmatched perturbations are not
amplified and moreover minimized. However, the

slide mode control method has an inherent feature

of the chattering phenomenon caused by the high-
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frequency control switching. This chattering
could severely deteriorate the performance of the
system.

Adaptive control systems are capable of tol-
erating large parametric, structural and parame-
terizable disturbance uncertainties, to ensure de-
sired system asymptotic tracking performance, in
addition to system stability’®™. Such asymptotic
tracking performance is crucial to many perform-
ance-critical system applications like aircraft con-
trol systems. Some adaptive control methods
with optimal control design were promoted to
solve the disturbance problem' ™. In Ref. [11],
the dead-zone modification stopped the adaptation
process when the norm of the tracking error be-
came smaller than the prescribed value'?’. How-
ever, the dead-zone modification was not lipschitz
and it might cause high-frequency and other unde-
sirable effects, especially when the tracking error
was near the dead-zone boundary. The s-modifi-

cation together with a dynamic normalization was

employed in the adaptive law to ensure robustness
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for small tracking errors and e-modification was
introduced to replace the constant damping gain ¢
with a term proportional to a linear combination
of the system tracking errors/**J,

However, for large tracking errors, the dead
zone, the ¢ modification, and the e-modification
slow down the adaptation. In Refs. [15,16], the
adaptive feedforward cancelation algorithms could
be applied to reject such frequency-modulated dis-
turbances, which were exactly equivalent to a set
of compensators implementing the internal model

In Refs. [17—20],

modification method was developed for systems

principle. optimal control
with unmatched uncertainty using a predictor
model for estimating the control input. However,
the existing adaptive disturbance rejection designs
are mainly for the matched disturbance rejection
or for the unmatched disturbance rejection, but
with certain difficulty of achieving the asymptotic
output tracking performance.

The motivation for studying adaptive con-
troller comes from the fact that it is still signifi-
cant to develop a new disturbance rejection tech-
niques to deal with unmatched input disturbances
for the asymptotic output tracking performance.
The main contributions of this paper is to propose
MRAC with lower diagonal upper (LDU) decom-
position-based controller for multivariable linear
systems with unmatched input disturbances, in-
cluding key design conditions in terms of system
control and disturbance relative degrees, nominal
plant-model matching control designs, adaptive

law and stability analysis.

1 Problem Formulation and Prelimi-
naries
1.1 Problem statement

The lateral-directional motion of a conven-

tional aircraft derived in Ref. [ 21 ] can be de-

scribed as
o 0 1 0
AR 7S P PR
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where the rudder §, primarily controls the yaw
rate r and the sideslip angle §. The ailerons &,
change roll rate p and the bank angle ¢. L,,N, are
the roll and the yaw moment with respect to the
roll rate, Ly N, the roll and the yaw moment with
respect to the sideslip angle, L,N, the roll and
the yaw moment with respect to the yaw rate,
Y,.Y,.Y, the side force derivatives with respect to
the sideslip angle, the roll rate and the yaw rate,
Y, . Y; the side force derivatives with respect to
the aileron and the rudder deflection, Ny , L; the
yaw and the roll moment derivatives with respect
to the rudder deflection angle, L; . N; the yaw
and the roll moment derivatives with respect to
the aileron deflection angle, ¢. and . the angle of
bank and the sideslip angle due to disturbance,
b, and b, the parameter vectors of disturbance.
This linear aircraft system model can be described
in the following form
x(1) =Ax (1) +Bv(t) + B,d (1)
y(1) =Cx (1)
where A € R™",B € R"M,B, € R’ and C € R"™

are constant and

(2)

unknown, d(t) =
[di (), d,()]" € R” is the disturbance vec-

tor. The element d;(#) is characterized as

d; () =dj (D) + D duf D (3

k=1

where d;,(¢t) and d; (1) are some unknown con-
stants, f4 () some known bounded continuous
signal, j =1,2,3,+,p;k =1,2,3,++, g;. Note
that such a parameterizable disturbance feature is
necessary for an adaptive compensation design to
cancel the disturbance effect.

An augmentation control signal v(z) is intro-
duced to cope with system parameter uncertain-
ties. The state variable x (¢) is available for meas-
urement, the nominal state feedback controller
with the disturbance rejection term is

v() =v' () =K, "x(0) + K, r(t) + K; ()
(4)
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where the nominal parameters K;T(z) € R,
K;"(t) € R"™™ are for the plant-model output
matching, K;"(z) € R is used to cancel the
effect of the disturbance. d(¢) and r(z) & RM are
external reference input signals. The control ob-
jective is to design an adaptive controller v(¢) so
that the system (2) output state vector signal
y(2) can asymptotically track a reference output
vector signal y,, (¢) generate from a chosen refer-
ence model

Yu () =W, () [r] (D) (5
whereW,,(s) € R™™ is a stable transfer function
matrix to be chosen asW,, (s) =¢&,'(s) € R for
the modified interactor matrix &, (s) of G,(s) =
C(sI — A)7'B. Note that in this paper, we use the
notation y = G(s)[v](z) to represent the output
y(2) of a system, whose transfer matrix is G(s) ,
and input is v(¢) a convenient notation for adap-

tive control systems.
1.2 Preliminaries and assumptions

Lemma 1% For every real matrix with
nonzero, leading principal minors can be uniquely
factored as
K, —LDU (6)
where L is the unity lower triangular, U the unity
upper triangular, and
D =diag{d, .dy " d,.} =
diag{A; A, A7 00 A, A0 D

22]

Lemma 2° For any M X M strictly proper
and full rank rational transfer matrix G(s) , there
exists a lower triangular polynomial matrix &, (s)
defined as the left interactor matrix of G(s) as

d, (s) 0 0 0

hs () dy(s) 0 0

£, (s) = &

dM(S)
1;0=2,3,---,M,

wm(s) Ry (s)
where A} (s),j=1,2,3,- .M —
are some polynomials and d,;(s) are any chosen
monic stable polynomials such that the high-fre-
quency gain matrix of G(s) defined as K, = hjn
£,(s)G(s). From the baseline controller based
system in Eq. (1), the control and disturbance

transfer functions are obtained as G,(s) = C

(sI —A) 'Band G,(s) =C (sI —A) ' B, and are

expressed in their left coprime polynomial matrix
decompositions: G,(s) =P;' (s) Z,(s) and G, (s) =
P (s) Z,(s), where P,(s), Z,(s) € R and
Z,(s) € R are some polynomial matrices.
Assumption 1
and (A,B,C) is stabilizable and detectable.

Assumption 2

All zeros of G,(s) are stable,

G,(s) is strictly proper with
full rank and has a known modified interactor ma-

trix €, (s) such that K, zlim &, (s) G,(s) is finite

and nonsingular (so that W, (s) =¢&,'(s) € R™Y
can be chosen as the transfer matrix for the refer-
ence model system).

Assumption 3  The leading principal minors
of the high-frequency gain matrix K, are nonzero,
and their signs are known.

Assumption 4  The transfer matrix Z,' (s)
Z,(s) is proper.

Remark 1 Assumption 1 is for output matc-
hing and internal signal stability. Assumption 2 is
for choosing the reference system model for adap-
tive control. Assumption 3 is for designing adap-
tive parameter update laws. Assumption 4 is the
relative degree condition from the control input

v(¢) and the disturbance input d(¢) to the output
y()

2 Adaptive Disturbance Rejection
Design
2.1 Adaptive controller design

In this section, an adaptive rejection of un-
matched input disturbances in multivariable sys-
tems is introduced to the augmentation of the
baseline controller based on LDU decompositions
of K,.

Lemma 3 The matrix K, zlimé,,, (s)G,(s) 1s
finite if Z,' (s) Z,(s) is proper.

Proof

From Assumption 2, K, =114m E,()G,(s) is
finite and nonsingular. We have

1i5{1K;1€,,,(s)GP(s) =1 €))

Hence, if Z,' (s) Z,(s) is proper, K,'&,,(s) Z,' (5) «
Z,(s) is proper, that is

limK,'€,, ()G, () Z, () Z,(s) < o (10)

§00
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Using G, (s) =P; ' (5) Z,(s) in Eq. (10), we have
1i£?K;1§,), (OHPT(SZ, (2 () Z,(s) =
A 11;3K;1g,,1(s>P71 ()Z,(s) =
A !i@K}lé,,,(.s)G(/(.s) <I (1D

£, (sH)C -
(sI —A)" B, is proper, that is K, =1lim &, (s) «

So that we obtain the following:

G, (s) is infinite.

Based on LLemma 3, the existence of a nomi-
nal controller for the system in Eq. (2) is estab-
lished a follows.

Theorem 1  From the baseline controller
based system in Eq. (2) in the unmatched dis-
turbances, under Assumptions 1 and 4, there ex-
ists a state feedback control law, to make the
roundedness of all closed-loop signals, disturb-
ance rejection, and output tracking the reference
V. (D).

Proof

From the baseline controller based system in
Eq. (2), the input-output form is obtained as

y() =G,(s) [v] () +y) (12)
with G,(s) = C (I—A)'B
G,(s)[d](t) =C (sI —A)'B. Operate the inter-
actor matrix (a polynomial matrix) €, (s) in the
system in Eq. (2), x(1) = Ax (1) + Bv(r) +
B,d(t).y(t) =Cx(t), to reach an expression of

and y() =

E,(s) [v,]1(@) in a possible form
£, () [y] () =—Kx() + K@) +Kuv+ -+

Ko™ (1) + Kud (0) + K d () 4 +
K, d" () (13)
with some constant matrices K, € R"", K, €
RYM K, € R™™,j=1,2,--.0,;K, € R™?, and
K, € R"*,j=1,2,-+,1,. For some integers [, ,
/, = 0. From Eqgs. (2) and (12), we have
x(s)=GI—A) 'Bv(s) + (I —A) 'B,d(s)
14>
Expressing Eq. (13) in s domain and using
Eq. (14), we have
£, (Dy(s) =—K, I —A) 'Bv(s) +K,v(s) +
K, sv(s) +Kp/[] shv(s) —
K, I —A) '"Bud(s) +Kd(s) +K,sd(s)+
e+ Ky, shd(s) (15)
From Assumption 2 that K, =lim¢§,, (s) G, (s)

is finite and nonsingular and Assumption 4, K,; =
0,j=1.2,,0,,K,=K,, andK;; =0,j =1,2,++,
l,»K;=K,,K hence, we have
E,. (D [v] () =—Kx()+K,v() + K, ()
(16)
From Eq. (16) that the control law can be
designed as
vy =v' () =K "x(t) + K; r(t) + K; (1)
an
where K;i "=K,'K, .K; =K," and K; (1) =K,,d (¢)
with K., (1) = —K,' K, which leads the output
[y, () = r(p.
Eq. (17) to the system in Eq. (2), we have
y() =C(GI —A—B) —1BK;, [r] () +
CI—A—B) —1B[K; | (1) +
CGI—A—B)— 1B d(s) =W, () [r] () =y,
(18)

Remark 2 From the Eq. (18), we can con-

matching: &, (s) From the

clude that the plant-model matching conditions

are
CGI —A—B) —1BK; =W, ()W, (HK; !
K; (s) +C(sI —A—B) — 1B,d(s) =0 (19)

2.2 Parameterizations of K; T (¢)

For the disturbance vector d(z) € R? each el-

ement d; (1) in Eq. (2) can be expressed as

A =dpy+ Dduf 5 (O =p " f ;D
k=1
jzlazv"'ap (20)

where the parameter matrix and the disturbance

signal components are

n =[djo,dﬂ,---,djqj]T € R4™ @D
o=,/ s S, (v]" € Rv™
J=1.2,,p 22
Hence, the disturbance d(#) is expressed as
d(t) =N"Tf() (23)
pit OT«,ZH) OT«;/)H)

N%T - T * T T T 6

0((11H> | 1% 0«,/,\1) 0«,1\1)
R @A)

fo=[fw Lo L]t eRr
q=q1 tq + - +q,+p (25)

with Ky, = [Kin s Kip s Ky 1Ky € RY,j=1,
2,4+, p, the disturbance rejection term Kj T (#) is
parameterized as

K; (1) =Ksd (1) =KiuN " f(1) =K5, f (1) (26)
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where the parameter matrix is
Ky =[5 s sttt s, ] € R
q=q tq + o tq, P
@y =Kip, " € R j=1,2,,p (27)
Next, the adaptive disturbance rejection de-
sign for the state feedback control scheme will be
studied for the plant with uncertainties from the

plant and unmatched disturbances.
2.3 Error equation

Applying Eq. (4) to the system in Eq. (2),
the closed-loop system becomes
x(1) =(A+BK; ") x(¢) + BK; r(¢) +
BK; (1) +B.d () +B[v(1) —
K '"x(t) —K; r(t) — K; ()]
y(t) =Cx (1) (28)
In view of Eq. (19) the output tracking error
equation is
e(t) =y(t) —y,(t) =
W,(OK, [v—K/"x—K, r—K; ]+ f,©
K, =K, (29)
where f,(1) =Ce cats oy () converges to zero
exponentially fast due to the stability of A+BK; "
andW,,(s) =&, (s). Hence we have
E,.()[e] (D)=
K,[vit) —K;"x() —K; r(t) —K; ()] (30)

2.4 Adaptive designs using LDU decomposition

To deal with the uncertainty of the high-fre-
quency gain matrix K,, we use the LDU decom-
position in Lemma 1, we have

LE, () [e] (1) =

DU[v(t) — K/ "x(t) —K; r(t) — K; (1) ] (3D

We have the following formation
Uv(t) =v() —d—U)v() (32)

with Eqgs. (31),(32), we have
L'E, () [e] () =Dlv(t) —d—U)v() —

UK "x() —K; r(t) —K; (1)) ] (33)

We have a new parameterization
LE, () [e] () =Dv(t) —@; v(t) —® To(t)]
34
where @7 = [UK,".UK; ,UK;;| and w(z) =
[xT() R (), fT(H]".
tion motivates the new controller structure

v(t) =@, v(t) + Bl w(t) (35)

This new parameteriza-

where @, and @7 are the estimates of @; and ®@; T,
@, is the upper triangular with zero diagonal ele-
ments (only its nonzero elements are estimated).
Matrix @, has the same strictly form as that of
@, = —U), and
(0 ¢ g
0 0 ¢
: : : e R™Y O (36)
0O 0 - 0
10 0 e 0

From Egs. (34),(35),we obtain a new error

model

E.(H ] +0;E,()[e] () =DB" (e (1)
(37)

where the parameter error is ) =) — D,
and @ (1) =[®,(t) ,@] (¢)] is the estimate of un-
known parameter matrix @' =[®; @] ] ,0 (1) =
0" (M]" and @) = [x" (W, R ),
S (], where @; = (L' —I) is introduced is
introduced to parameterize the unknown matrix
L, which has the special form
0 0 0
051 O oo O
: 0 0
Om = Owua O

For such a matrix @, , the parameter vectors

0, = € R (38)

defined as
0; =0, € R
0: =[0:.05]1" € R
: (39)
0v = [Ov1 - Oviner | € RM
0y = [Oan s+ 0w ] € R
and their estimates are
0.(t) =0, (1) € R
0: (1) =[0:().0,(t)]" € R*
: (40)

0 () =[Oy (1) s 3Oy 2 (1) ] € RM?
0, () = [@Ml (1) s s Ornss ([)] c RV

We introduce a filter h(s) -1 where f(s)
JACD)

is chosen as a stable and monic polynomial whose
degree is equal to the maximum degree of the
modified &, (s). Operating both sides of Eq. (37)
by h(s) I leads to
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E,(Oh(s) [e] (1) +05 &, (Hh(s) [e] (1) =

D his) [@ 0] (D (41
We defined
e(1) =&, (D) [e] () =[e, (1) e, (D]"
(42)

(1) =[e, (1) e (D]T € R
i1=2,3,,M

From Egs. (41),(42) in Eq. (43), we obtained
e() +[0,0:" (O (1),0; " (O (1)

0. (O, (D] =Dh(H[D &)

Based on the parameterized error Eq. (41),

(43)

44)

an estimation error signal is introduced
e(t) =e(t) +[0,0; (D0, (1).05 (s (1),
0, (O, (D] WD) € R (45)
where W(z) € R™M is the estimate of ¥* =D and
() =h() ] (1) i=1,2,--,M (46)
() =" (D¢(t) —h(s) [@ o] (D)

“Un
i=1,2,-,M
Following Eqgs. (41)—(47), here we have
e() =[0.077,().07 7, (D). 0Ly, (D] +
DO+ V()¢ (48)

where W() =¥ (1) —W¥" and 0,(¢) =0,(t) —@; are
the parameter errors. This error model is a choice
for update laws.

Based on the error model Eq. (48), the adap-
tive laws are chosen as

PoISi(t)T],-(t)

0.(t) =— . i=2,,M (49)
m-(t)
. T
&' (1) = P£DE @ (50)
m- (1)
. T
11’(1)=—P—§—8’(;3(t)(t) 51)

where P, =P} >0, i=2,3,**,M, and P=P" >
0 are adaptive gains, Py, > 0 is defined in Eq. (7).
() =[e,; (1) e, (1) e+
Eq. (48), and

yen (1) ] T is calculated from

M
m* () =1+ O + DLW + Dl ging. (0

(52)
2.5 Stability analysis

For the adaptive laws in Eqgs. (49)—(51),
we have the following desired stability properties.

Lemma 4'**)  The adaptive laws ensures that

@) 0,-(1?) & LC(Z,iZZQB’...’M; 1 1€3) c L,

(D)
m(t)

Y(:) € L ,and cL*NL";

(2)0,(t) € L* VL™, i=2.3,-.M,

o) L NL ,and W) € L’ L.
Proof

We choose the positive definition function
M
V= %{ 20, 0+ [V T ' W]+ u[d' Do)
(53)
From Egs. (51), we derive the time-rivate of V

Wl (o) EDOWeG
V= 2 m* (1) m* (1)

N (54)
'(w@De (1) g' (Delr)
m* (1) m’ (1)

Similar to the case in Ref.[22], we derive that
0,(t) e L i=2,3,~ M
®cL

<o.

e(D)
m(t)

0.(t) e L N L~

| S

eL  NL” (55)
i=2,3, M

o CLPNL WL NL

Based on Lemma 4, the following desired
closed-loop system properties are established.

Theorem 2  For the plant (2) with uncer-
tainties from the system parameters and disturb-
ance (3) under Assumptions 1—4, and the refer-
ence model (5), the LDU decomposition based
MRAC scheme with the adaptive controller (4)
and adaptive parameter update laws in Eqgs.

(49)—(51) guarantees closed-loop system bound-

edness and asymptotic output tracking lime(z) =0

with e(t) =y(t) — y,, ().

Proof (outline)

The proof of this stability theorem can be es-
tablished through using a unified framework. Be-
cause the control input v(z) described in (35) de-
pends on the state x(¢z), it first needs to be ex-
pressed by using the system output y(z) through
establishing the state observer of the plant
() =(A—LC)X(t) +By(t) + B,d(t) +Ly (1)

(56)
where L € R™" is a gain matrix such that A-LC is

stable, which is possible (AC) is assumed to be
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detectable. Hence we have

V() =@ (D (1) + D (Do, (1) +

DL, (De; (1) + K, (Dr(t) + @, () f(1)
where @1 (1) , @3 (1) . @3, (2) . K3 () and @, (¢) are
adaptive estimates of the corresponding nominal

a(s)
ACs)

Lv] (),

controller parameters and o, () =

a(s) b(s)
ACs) A(s)

a(s) = [Lus Ly 5" Ly b(s) = [Is I, s

b(s)
A(s)

ic stable polynomial of degree n, which has the

[v] (D), 03(2) =

w, (1) = L], with

I,]", and A(s) = [ £1(¢) being a chosen mon-

same eigenvalues with A —LC. Then, introducing
the fictitious filters for the plant

y(&) =C (I —A)'Bv () +BC (sI —A)™' B,d (1)
and using series transformations, the control in-
put described as Eq. (57) is transformed into the

form

v(1) =Gy (se ) [] O + G D[]+
G:G, [ f1W+GuGs, H[f, ] (B8
where y(£) =h(s)[ y]() Ch(s) is given below Eq.
(49)) and G, (s, )y G2 (s, *), Gi3(s, +), and
G,, (s, «) are proper stable operators with finite
gains. Furthermore, a filtered version of the out-
put signal y(z) is expressed in a feedback frame-

work

Iy | <ot | en @

] ’ (59)
<J e | 3@ || do)de

0

for some B sais az > 0,and x, (1) = Hgf(z) ||+
[ ()| m() € L* | L~. Applying the small gain
lemma to Eq. (59), we can conclude that y(¢) &
L™, and so y(t).v(¢t) € L.
satisfy () .&().&(t) .m(¢),e(t) € L~. Fur-

(1)
m(t)

Thus, the signals

@), ¥(t) € L* (Lemma

thermore, 0,(¢),

4 ) are satisfied and in turn {(z) and e(z) =y(z) —
v. (), such that e(z) =y(t) — y, () converges to

Zero.

3 Simulation

The proposed LDU decomposition based
adaptive disturbance rejection scheme is used to

an aircraft control system model with turbulence

disturbances, and a detailed procedure is given.
3.1 Aircraft system model
The following example for a small passenger

aircraft in a cruise configuration derived in Ref.

[21], typical values of these parameters are

0 0 1 0
0.0487 —0.0829 0 1
ATl 0 516 —1.699 0.1717

L0 3.382  —0.0654 —0.089 3
To0 0
s | 0 ooe ’C:F 0 0 0}
27.276  0.575 8 01 0 0
0.395 2 —1.362
0 0
—0.0487 0.082 9
o 0 4. 546
0 3. 382

3.2 Controller design

For the aircraft system, the transfer func-
tion, G,(s) =C (sI —A)™" has stable zeros: s, =
—4.507, s, = —20. 91, sy = —0. 568 5, and is
strictly proper and full rank. The interactor ma-
trix is chosen as

E(s) =diag{s+1 G+17%} (60)

The high-frequency matrix

2.267 3

K, =i g(v)cv)—[ 8'8455}
P IEE T 0. 090 2

—0.352 1
61
is finite and nonsingular and the matrix
—0.0386 —0.0526
—0.2481 —0.624 6}
(62)

K, =1imé&, ()G, (s) = {

1

(s+1)*
and G, (s), we can obtain
—0.017 —0.006 4
(63)
2.749 3 1.773 9

which means relative degree condition assumption

is finite. We choose h(s) = . From G, (s)

ljrpZJl ($)Z,(s) = {

4 is ensured. The related gain parameters in a-
daptive laws in Egs. (49)—(51) are chosen as

P, =5,P, =diag{0.5 0.5}

P =diag{l 1} (64)

3.3 Simulation results

Two types of disturbance are described the
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constant turbulence and the time-varying turbu-
lence.

(1) We consider the constant roll and slide
angle wind velocity disturbance as

¢. =1 crad/s, B, =1 crad/s, (cradiscent rad).

(2) The time-varying roll and slide angle
windvelocity disturbance are as ¢, = 2sin(0. 2¢)
crad/s, B =3sin(0. 2¢) +2sin(0. 5¢) crad/s,

Three sets of simulation results are provided
below.

Case 1 is for time-varying tracking with ref-
erence step input when the uncertainty parame-
ters and constant roll and slide angle wind veloci-
ty disturbance occur. As shown in Figs. 1,2, the
LQR controller is able to stabilize the perturbed
dynamics and the tracking performance is unac-
ceptable. The aileron and rudder deflections ex-
As shown in
Figs. 3,4, the new MRAC method is able to sta-

bilize the perturbed dynamics and recovers the de-

hibit the unwanted oscillations.

sired closed-loop tracking performance and the

transient of this controller is well performed.

Command
Actual

100 120 140

NO N A O

40 60 80

40 60

with disturbance

Fig. 1 LQR response with disturbance for Case 1

60 80 100 120 14

ol input for Case 1 of aileron

0 60

80 100 120 14

ontrol input for Case 1 of rudder

Fig.2 LQR control input for Case 1

Actual

Reference

Command
!

80 100 120 140

Actual
Reference
Command

100 120 140
/i | of side ]

Fig.3 New MRAC system response for Case 1

20 40 60 80 100

60 80 100 120 140

Fig.4 New MRAC control input for Case 1

Case 2 is for the corresponding time-varying

tracking with time-varying input
r(t) = [sin(0.3¢) 0.5sin(20)]"

when the uncertainty parameters and constant roll
and slide angle wind velocity disturbance occur.
As shown in Figs. 5,6, the proposed controller is
able to stabilize the perturbed dynamics and re-
covers the desired closed-loop tracking perform-
ance,

Actual
Reference

100 120 140

Actual
Reference

100 120 140

Fig.5 New MRAC system response for Case 2
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Fig. 6 New MRAC control input for Case 2

Case 3 is for corresponding time-varying
tracking tracking with time-varying input r(z) =
[sin(0.3z) 0.5sin(22) ] " when time-varying roll
and slide angle wind velocity disturbance occur.
As shown in Figs. 7, 8, we can also draw the
same conclusions as Case 2.

Actual
Reference

Actual
Reference

Fig.7 New MRAC system response for Case 3

Fig. 8 New MRAC control input for Case 3

From the simulations above, the proposed
new controller shows great effectiveness when the

matched and unmatched disturbance occur.

4 Conclusions

In this paper, a multivariable disturbance re-
jection scheme is presented to solve the wind tur-
bulence problem. The state feedback output
tracking MRAC scheme is designed based on the
LLDU decomposition of the high-frequency gain
matrix. The proposed LDU decomposition based
disturbance rejection techniques are used to solve
a typical aircraft turbulence compensation prob-
lem. Finally, simulation results have been pres-
ented to show that MRAC-based disturbance re-
jection scheme is an effective method of the air-

craft control system with the disturbances.
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