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Abstract; In order to achieve the goal that unmanned aerial vehicle(UAV) automatically positioning during power
inspection, a visual positioning method which utilizes encoded sign as cooperative target is proposed. Firstly, we
discuss how to design the encoded sign and propose a robust decoding algorithm based on contour. Secondly, the
Adaboost algorithm is used to train a classifier which can detect the encoded sign from image. Lastly, the position
of UAV can be calculated by using the projective relation between the object points and their corresponding image
points. Experiment includes two parts. First, simulated video data is used to verify the feasibility of the proposed
method. and the results show that the average absolute error in each direction is below 0. 02 m. Second, a video,

acquired from an actual UAV flight, is used to calculate the position of UAV. The results show that the calculated
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trajectory is consistent with the actual flight path. The method runs at a speed of 0. 153 s per frame.
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0 Introduction

Unmanned aerial vehicle (UAV) technology
has become more and more widely used in most

fieldst.

to fly at various speeds, to stabilize their posi-
),

UAVs are distinguished for their ability
tion, and to hover over a targe These advan-
tages enable them suitable to replace humans in
some special tasks when human intervention is
dangerous, difficult and expensive. Therefore,
UAVs are increasingly used in power inspection.

To maximally reduce the power equipment
failures and huge economic losses, transmission
line and substation equipment ought to be regu-
larly inspected for detecting defects as soon as
possible to arrange the maintenance plan™. It is
well known that, as an essential part of modern
power systems, the stable operation of transmis-
sion lines plays a crucial role in the entire power
system. Transmission line inspection is a necessa-

ry mean for operation and maintenance to ensure
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the secure function of the power system and af-
ford good service for users . There are two
common methods of power equipment inspection,
one is foot patrol, and the other is inspection by
mobile robot or UAV™® . The foot patrol inspec-
tion mainly relies on people to traverse along the
scheduled route and inspect the power equipment
such as voltage transformer, current transform-
er, load switch, circuit break and so on. It is in-
efficient, tedious and laboring. More and more
researchers have spotted that and exploited UAV
for power inspection thanks to its advantages
mentioned above.

UAVs should

avoid collisions with power equipment and to

During power inspection,

achieve the autonomous inspection, UAVs should
be able to acquire its position using sensors
mounted on the UAV' . A common way of pro-
viding position is the use of GPS sensor™, but

GPS has two shortcomings: Electromagnetic in-
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terference from transmission line may cause poor
positioning accuracy; and the accuracy of position
only reach 1-—2 m based on point positioning of
GPS., which cannot effectively avoid dangerous e-
quipments. Therefore, vision based navigation is
a wise choice. Monocular camera, a light weight
and an inexpensive sensor has been used for com-

pletely autonomous flights®). A vision based

17 estimates the five degrees-of-free-

framework’
dom pose using a camera mounted on a quadrotor
helicopter. Real-time position for autonomous
navigation of a UAV!"Y has been achieved on a
mobile processor using an on-board computing u-
nit and multiple sensor (laser, camera, and iner-
tial measaremeni unit (IMU). A scanning laser
range sensor retrofitted with mirrors is used as
primary source of information for position estima-
tion. This is followed by simultaneous localiza-
tion and mapping algorithm (SLAM). A land-
mark-based monocular localization technique' u-
ses the time-consuming scale invariant feature
transform (SIFT) for absolute pose estimation.
Monocular vision™* has been used to extract ed-
ges and compared with known 3D model of the
environment followed by particle filter for locali-
zation. The autopilot uses an optic flow-based vi-
sion system'*! for pose estimation based on au-
mapping.

Strelow and Singh™* proposed a real-time visual-

tonomous localization and scene
inertial navigation using an iterated extended Kal-
man filter (EKF), but its complexity grows with
the number of features. Mourikis et al. "' pro-
posed a more efficient approach which considered
pairwise images for visual odometry and fused the
output with inertial measurements in an EKF.
718 have been coupled
with EKF SLAM framework. However, the
computational cost of EKF SLAM is O(N?) for N

features. What we need is to estimate the pose of

The IMU measurements"

UAYV using a light weight sensor requiring mini-
mal processing.

Considering the special scene of the transmis-
sion line, we exploited the encoded sign as coop-
erative target to achieve visual-based positioning.

The encoded sign was hanged on the pylon and

monocular camera was mounted on UAV. We
calculated the position of UAV by using the pro-
jection of more than three encoded signs on the

image.

1 Design of Encoded Sign and Its De-
coding

In the field of high-precision photogramme-
try, it is necessary to set up a certain number of
measurement signs as control points, then the ge-
ometric parameters can be calculated by measur-
ing the object and image position of the measure-

ment signst',

Inspired by photogrammetry, a
UAYV needs to know the location of the object
control point and its location on image. In visual
navigation, the artificial sign is usually used as
control point or cooperative target™®™. Here, we
use encoded signs to distinguish different loca-
tions of object points. The encoded sign should be
convenient for identifying from the image and de-

coding fastly.
1.1 Design of encoded sign

Since the rectangle has significant Haar char-
acteristics, and it is convenient to train a classifier
by Adaboost algorithm™'", the shape of encoded
sign is designed to be circular, and six rectangles
enclosed in the circle are used to encode the sign.
Among the six rectangles, there are four coded
rectangles, one location rectangle and one direc-
tional rectangle (Fig. 1). The directional rectan-
gle is to determine the starting position of the de-
coding so that the encoded sign is of rotation in-
variance. The function of the location rectangle is
to determine the center of the encoded sign. The
sign is encoded in binary: The white coded rec-
tangle represents 1, while the black 0. The black
coded rectangle is not shown in the sign due to
the black background. Since there are four coded
rectangles, the total number of combinations are
2'=16 (Fig.2).

1.2 Decoding of encoded sign
A robust decoding algorithm is one of the

most critical parts of UAV autonomous positio-

ning. We proposed a decoding algorithm based on
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Fig. 1 Composition of encoded sign
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Fig.2 Coding combinations

contour. The algorithm maintains strong robust-
ness under some extreme conditions such as
blurred image, small image and large angle
shooting. The details (Fig. 3) of decoding are as
follows:

(1) Extract the region of interest

In the real video, acquired by UAV, each
frame may contain multiple encoded signs, so it is
necessary to determine the approximate range of
each sign in the entire image, as called region of
interest (ROI). We exploited a classifier to detect
ROI from image frame. The classifier is trained
by Adaboost algorithm, it will be discussed in
Section 2.

(2) Convert the ROI image from RGB to
gray

There are only two colors in encoded sign,

Binarize

_—

Convert

_—

Gray image Binary image
Determine the range

of encoded sign
Find the
directional
rectangle

Find the
location

rectangle
_-—

Directional pecoding Location rectangle
rectangle

The range of
encoded sign

Fig.3 Flow chart of decoding

black and white, so the ROI image is converted
into single-channel gray image for the convenience
of decoding.

(3) Binarize the ROI image

Since the decoding algorithm is based on the
contour, ROI image needs to be binarized before
extracting contour. The ROI image is almost full
of encoded sign, and there are only two colors in
encoded sign, so the threshold to binarize the
ROI image is set to the mean gray of ROI image.
Those pixels greater than the threshold are as-
signed a value of 1, while pixels less than the
threshold are assigned a value of 0.

(4) Accurately determine the range of enco-
ded sign

In order to eliminate the interference of com-
plex surrounding, it is necessary to accurately de-
termine the range of encoded sign. First of all,
find all contours in the binary image, and then fit
the external rectangle for each contour. Since the
ROI image is almost full of encoded sign, the lar-
gest external rectangle is considered to be the ex-
act range of encoded sign.

(5) Find the location rectangle

The location rectangle is located in the center
of encoded sign (Fig. 1). Therefore, traversing
all the external rectangles in the range of encoded
sign, the external rectangle which is closest to the
center of encoded sign is determined as location
rectangle.

(6) Find the directional rectangle

The directional rectangle is the smallest in
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area and the largest in aspect ratio (Fig. 1).
Traversing all external rectangles in the range of
encoded sign, the external rectangle with smallest
area and largest aspect ratio is the directional rec-
tangle.

(7) Decoding

After finding the location rectangle and the
directional rectangle, the starting direction is de-
fined as the center of location rectangle point to
the center of directional rectangle (Fig. 4). Scan-
ning clockwise from the starting direction, if
there is a coded rectangle, the value 1 is assigned

to the corresponding binary bit until returns to

the starting direction.

Fig. 4 Decoding

2 Detection of Encoded Sign From

Image Frame

Before decoding the encoded sign, the enco-
ded sign should be detected from the image
frame. Since UAV needs to calculate its position
in real-time, algorithm which can detect the enco-
ded signs in real-time is critical. Inspired by the
work of Paul Viola and Michael J. Jones™, the
Adaboost algorithm was used to construct a face
detection system which is approximately 15 faster
than any previous approach, the face can be de-
tected in real-time. Therefore, we exploited the
Adaboost algorithm to train a classifier which can
be used to detect the encoded sign from image

frame in real-time.
2.1 Classifier training

Before training, the encoded sign should be

represented by some features. The encoded sign

is consisted of rectangles, so Haar features which

L2 s of value.

have been used by Papagergiou
More specifically, we use three kinds of features.
The value of a two-rectangle feature (shapes D
and @ in Fig. 5) is the difference between the
sums of the pixels within two rectangular region.
The regions have the same size and shape and are
horizontally or vertically adjacent. A three-rec-
tangle feature (shapes @, @in Fig. 5) computes
the sum within two outside rectangles subtracted
from the sum in a center rectangle. Finally a
four-rectangle feature (shape® in Fig. 5) com-
putes the difference between diagonal pairs of rec-
tangles™® . Note that the number of Haar fea-
tures is far larger than the number of pixels. For
example, given that the base resolution of detec-
tor 24 pixel X 24 pixel, the set of rectangle fea-
tures is quite large, 45 396. Computing all of the

features is time consuming.
©) ©) ® @ ®

Fig. 5 Haar feature

The Adaboost algorithm is to select a very
small number of these features to determine the
weak classifiers™”, and then to combine the weak
classifiers into a strong classifier. The procedure
of Adaboost (Fig. 6 (a)) can be described as fol-
lows:

(1) Given example images (x;,y,) ., (2,
y,) where y; =1 for positive (the image with the
encoded sign) and y, =0 for negative (the image
without the encoded sign) examples. The size of

the example is 24 pixel X 24 pixel.

(2)Tnitialize weights w,, =L for y, =0.1

2m
respectively, where m and [ are the number of
negatives and positives, respectively.
(3DFort=1,,T;
(D Normalize the weights
Wy,

= n
E :w,.]

i=1

Wy,
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Classifier

Adaboost

Classifier

(a) Training procedure

(b) Detection procedure

Fig. 6 Training and detection procedure

so that w, is a probability distribution.
@ For each feature j , train a weak classifier
h; which is restricted to a single feature. The er-

ror is evaluated with respect to w,.;

g = g W

@ Choose the classifier #, with the lowest er-

]lj (.T,‘) I

rore,.
@ Calculate the weight of the classifier A,
a = ilog 17e
2 €,
® Update the weights
W10 — Wy, 217FI

where e; = 0 if example x; is classified correctly,

&
1—e ~

(4) The final strong classifier

e; =1 otherwise, and g, =

T
H(x) =sign<2ath,)

=1

2.2 Encoded sign detection

Now the strong classifier can be used to de-
tect the encoded sign. The procedure of detection
(Fig. 6 (b)) is as follows:

(1) Initialize the search window

Since the size of the example is 24 pixel X 24
pixel, the initial size of the search window is set
as 24 pixel X 24 pixel.

(2) Traverse the entire image

Slide the search window with a fixed stride,

and calculate the Haar features at each window
position. Then the Haar features are fed to the
strong classifier H(x) to determine if the search
window contains the encoded sign or not.

(3) Expand the size of the search window

In order to detect the encoded sign with dif-
ferent scales, the size of the search window
should be expand and repeat step (2) until the
size of the search window exceeds half of the im-
age size.

(4)Merge the search results

After steps (2),(3), the same size of adja-
cent search window may detect the same encoded
sign (Fig. 7 (a)) and the search window with dif-
ferent sizes may also detect the same encoded sign
(Fig. 7 (b)). To eliminate redundancy, these
kinds of search windows should be merged. For
the case that the search windows with the same
size, if the number ( N ) of search windows with-
in the neighborhood radius ( R ) is greater than
the threshold ( T ), then the position of the enco-
ded sign is the average position of N search win-
dows. If Nis less than T , it means that there is
no encoded sign. For the case that the search
windows with different sizes, if the overlapping
area of the two windows is greater than the given
threshold, there is only one encoded sign exist,
and the average position and average size of the
two search windows are the final detection of the
encoded sign. Otherwise, there are two encoded

signs.

(a) The same size of search
window

(b) Different sizes of search
window

Fig. 7 Redundancy in two kinds of search window

3 Calculation of UAYV Position

Since the camera is fixed on the UAV, we
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replace the position of the UAV with the
camera's position. Suppose that the camera is lo-
cated at the origin of a Euclidean coordinate sys-
tem with the principal axis of the camera pointing
straight down the z-axis. Such a coordinate sys-
tem may be called as the camera coordinate frame
(Fig. 8). Let the center of the projection be the
origin of the camera coordinate frame, and con-

sider the plane 2= f, which is called as the image

plane.
Y. Image plane
Yo 7z
Rt
C Z ’
f ‘cam

o Y

Camera coordinate frame ‘World coordinate frame

X
Fig. 8

Transformation between the world and camera

coordinate frames

We now introduce the notation X., for the
point in camera coordinate and represented by the
homogeneous 4-vector (Xem s Y em s Zem s 1) T3x for
the image point represented by the homogeneous
3-vector (x,y,1). Then the mapping between
Xm and x can be written in terms of matrix multi-

plication as:

cam

x N2 b.
y|= ‘f p , cam ( 1 )
1 1 o

1
where (p.,p,)" are the coordinates of the princi-

ple point on the image plane (Fig. 9).

P, p)
Principle point X,

‘cam

x Image plane

Fig. 9 Image and camera coordinate systems

Now writing

Vol. 34
/ D
K= f by (2)
1
Then Egs. (1) has the concise form
x=K[I| 0]X,, (3)

The matrix K is called as the camera matrix,
which can be calibrated by the method of Zhengy-
ou Zhang™.

In general, points in space will be expressed
in terms of a different Euclidean coordinate
frame, known as the world coordinate frame.
The two coordinate frames are related via a rota-
tion and translation (Fig. 8). If Xis an inhomoge-
neous 3-vector representing the coordinates of a
point in the world coordinate frame, and X, re-
presents the same point in the camera coordinate
frame, we may write

Xim =R(X—O) 4)
where C represents the coordinates of the camera
center in the world coordinate frame. In this pa-
per, C represents the position of UAV, and a ro-
tation matrix R 3 X 3, which determines the pose
of UAV. This equation may be written in homo-

geneous coordinates as

X
R —RCT\|Y R —RC
Xow = = X (5)
|
1
Putting this together with Eq. (3) leads to
x=K[R | t]X (6)

where from Eqs. (5), t=—RC .

In order to calculate the position of UAV,
C , R and t should be calculated firstly. Note that
[R| t] matrix has 6 degrees of freedom: 3 for
R, and 3 fort , a pair of image-object points pro-
viding two equations. So we need at least three
pairs of image-object points to calculate the pa-
rameters, but we usually use more than three to
improve the accuracy of the solution.

In our work, x is the image coordinate of en-
coded signs, and its value is provided by the pro-
cedure of detection (Section 2). X is the world co-
ordinate of encoded sign, and its value has been
determined at the time of installation. The corre-

spondence between x and X is determined by the
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procedure of decoding (Section 1. 2). Denote m as
the image point matrix and M as the world point
matrix, then the parameters R and ¢ can be calcu-
lated as follows:

(1) Denote m, as the mean of M ;

(2) Calculate the intermediate matrix M,

M, =M—m)"(M—m,) D)
(3) Singular value decomposition of M,
M, =UWV €))
And
R =V
T,=—mR, (M

M, =VM'+T,
(4) Find homography between m and M., by

d[24]

the robust estimation metho , and the homog-

raphy matrix can be written as

H = I:hl hz t/:I (10)
Normalize every column of H
hl h')
h — h2 e
oA Ik, |
/ t
hy;=h, Xh, t = (1D
o [y [l + [ ke |

H=[h, h, h;]

(5) Calculate the rotation matrix and transla-

tion

R =HR,

t=HT, +1 (12)
Finally, the position of UAV C can be calcu-

lated
C=—R"t (13)
The position of UAV may be inaccurate due
to the wrong decoding of encoded signs. There
are three methods in this paper to improve the ro-
bustness of calculating the position of UAV,
First, coding combination is limited, so the deco-
ding algorithm automatically eliminates the deco-
ding results that do not exist. Second, for the
case that decoding result exist but the result is
wrong, we use the RANSAC algorithm to cope
Ref. with this kind of mistakes in the procedure
of finding homography™’. Third, the positioning
results of adjacent two-frame image should be in a
short distance, and the current positioning result
will be removed if it is far from the previous posi-

tioning result.

4 Experiment and Discussions

4.1 Data

We exploited two kinds of data to complete
the experiment, the simulated data and the real
data. The former was used to verify the feasibili-
ty of proposed method, while the latter was to
calculate the position of the actual flight of UAV.

We used Unity3D to generate simulated da-
ta. The simulated scene had all the elements we
needed(Fig. 10). The image size is 1 920 pixel X

1 080 pixel, and we generated 210 simulated ima-

ges.

Fig. 10  Simulated scene

The real data was obtained by UAV from the
experimental site of China Electric Power Re-
search Institute, Wuhan. Ten encoded signs,
with the diameter of 80 cm, were hanged on the
pylon (Fig. 11). The focal length of the camera
was 5 mm, The image size was 2 530 pixel X

2 000 pixel.

Fig. 11 Real scene

4.2 Results of detection

In Section 2. 2, the neighborhood radius R
was set to the half of the search window. Within
the neighborhood radius, the number threshold T

was set as 2. We randomly selected 373 images
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from the real data for detection experiment. The

detection results are shown in Table 1.

Table 1 Results of detection

Actual total Total number
number (N) detected (S)
2 143 2022 2019 3
Note: Precision=T/S=99.85% Recall=S/N=094.35%

True (T) False (F)

There were 2 143 encoded signs among 373
images. The classifier deteced 2 022 ROIs which
the classifier determined the presence of encoded
sign. Among the 2 022 ROIs, there were 3 ROIs
did not contain the encoded signs. So the preci-
sion was 2 019/2 022=099. 85% , and the recall is
2 022/2 143 = 94. 35%.

frame, the classifier can detect sufficient number

It means that for each

of encoded sign for calculating the position of
UAV.

4.3 Results of decoding
For the 2 019 ROIs which contained the en-

coded sign, the decoding algorithm mentioned in
Section 1. 2 was used to decode the encoded sign
in each ROI. Results can be seen from Table 2. It
shows that the decoding algorithm can decode
ROIs with high decoding accuracy.

Table 2 Results of decoding

Code Total Number of Error
number errors rate( %)
0001 147 0 0
0010 182 0 0
0100 170 0 0
0101 268 0 0
0110 174 0 0
1000 139 0 0
1001 153 0 0
1010 277 0 0
1100 267 1 0.374 5
1110 242 0 0
Total 2019 1 0.374 5

In addition, we also verified the robustness
of the decoding algorithm. In actual flight, the
encoded sign in the image may be deformed and
blurred due to UAV vibration and other factors.

Moreover, the complex surrounding also brings

challenges to the decoding of the encoded sign.
We verified our decoding algorithm in different
conditions, such as complex surrounding, blurred
image by the vibration of UAV, dirt on the sur-
face of encoded sign, small encoded sign and de-
formed image due to the angle of shooting. Table
3 shows the results of validation. It can be seen
that our decoding algorithm has high robustness,
and enables the UAV to achieve accurate positio-

ning in complex environment.

Table 3 Robustness test of decoding

ROI Disturbance Visualization Results
. (Jomple.x . o
surrounding
. Blurred image . 0100
Dirt on the Su?face 1111
of encoded sign
Power line passes
through the encoded 0001
sign
bmal‘l encoded i%lgn 1110
(18 pixel X 18 pixeD)
Def d due to th
m— T oo

angle of shooting

4.4 UAV positioning results

Since the UAV is not equipped with positio-
ning device, the real position of the UAV is un-
known. In order to verify the positioning accura-
cy and the feasibility of our method., we used U-
nity3D to build a simulated scene (Fig. 10). In
the simulated scene, we set the UAV flight path
in advance, and the position of each image frame
was known. We took 210 images in the simulated
scene to verify our method. The positioning re-
sults are shown in Table 4. From the results we
can see that the average absolute error in each di-
rection is below 0. 02 m, thus verifying the feasi-

bility of our method.
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Table 4 The results of simulation m
Actual position Calculated position Absolute error
Frame
X Y, Za Xc Yo Zc AX AY AV
1 2.552 0. 850 26.955 2.550 0.833 26.952 0.002 0.017 0.003
2 2.810 5.419 25.981 2.814 5.432 25.976 0. 004 0.013 0. 005
3 0. 005 3.254 25.539 0.003 3.250 25.538 0.002 0. 004 0.001
208 2.382 4,428 25.764 2. 385 4,422 25.764 0.003 0. 006 0. 000
209 4.838 2.414  29.406  4.833 2.382  29.407  0.005 0.032 0.001
210 1.931 0.917 27.714 1.908 0. 906 27.712 0.023 0.011 0.002

At last, the video, acquired in actual UAV
flight, was used to calculate the position of
UAV. Fig. 12 is the User Interface of autono-
mous positioning and Fig. 13 shows the trajectory
which is composed by the position of each frame.
The blue dot indicates the beginning of the video,
while the dark red dot indicates the end of the
video. The UAV climbed up at the beginning,
then hovered at the top for a short time, and fi-
nally flew away from the pylon and slowly de-

clined to the ground. This is consistent with the

actual flight path.

Fig. 12 Interface of autonomous positioning

Ground 4 67

©3161651717515 185 19
y/m

19520 2050 ' * x/™  Frame

Fig. 13 Trajectory of each frame

4.5 Efficiency of the proposed method

Our method was implemented by C+ + lan-
guage combined with OpenCV, and run in Win-

dows 8. 1, Intel core i7 processor clocked at
2.6 GHz alongside 8 GB of memory. The image
size is 1 920 pixel X1 080 pixel, and the running
time of each module is shown in Table 5. As can
be seen, the total processing time for each frame
is 153 ms, thus the UAV can avoid the obstacles

in time during the transmission line inspection.

Table S Running time of each module

Module Time cost/ms
Detection 150
Decoding 2

Positioning 1
Total time 153

5 Conclusions

A method for autonomous positioning of
UAYV during the inspection of transmission line
was proposed. It provides high-precision obstacle
avoidance information for UAV flight control
module to avoid dangerous accidents, for exam-
ple, collision of UAV with electrical equipment.
The proposed method improves the automation of
transmission line inspection, and reduce the labor
intensity. In our future work, deep learning
method may be used to avoid obstacles without

exploiting encoded signs as cooperative target.
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