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Abstract; The failure of rotating machinery applications has major time and cost effects on the industry. Condition
monitoring helps to ensure safe operation and also avoids losses. The signal processing method is essential for en-
suring both the efficiency and accuracy of the monitoring process. Variational mode decomposition (VMD) is a sig-
nal processing method which decomposes a non-stationary signal into sets of variational mode functions (VMFs)
adaptively and non-recursively. The VMD method offers improved performance for the condition monitoring of ro-
tating machinery applications. However, determining an accurate number of modes for the VMD method is still
considered an open research problem. Therefore, a selection method for determining the number of modes for
VMD is proposed by taking advantage of the similarities in concept between the original signal and VMF. Simula-
ted signal and online gearbox vibration signals have been used to validate the performance of the proposed method.
The statistical parameters of the signals are extracted from the original signals, VMFs and intrinsic mode functions
(IMFs) and have been fed into machine learning algorithms to validate the performance of the VMD method. The
results show that the features extracted from VMD are both superior and accurate for the monitoring of rotating
machinery. Hence the proposed method offers a new approach for the condition monitoring of rotating machinery
applications.
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0 Introduction

Failures in engineering systems are basically
due to the rotating components, such as the
gears, bearings, turbines, shafts and rotors.
Prolonged operation in harsh working conditions
causes these components to deteriorate, especially
the gears and bearings. In most cases, sudden
failures are a major problem in industries in which
such failures cause losses in finance, equipment
and resources. Hence, maintaining and sustaining
the rotating machinery components is very impor-
tant for ensuring safe operation and avoiding fa-
talities. Condition monitoring technology offers a

good solution for industrial staff when maintai-

ning their assets™,

Vibration-based monitoring
is one of the most popular condition monitoring
technologies, and has been used in many indus-
tries because of its simple, low implementation
cost and effectiveness compared with other moni-
toring technologies.

Much research has been carried out over re-
cent decades to produce a more effective and effi-
cient rotating machinery monitoring process. In
recent condition monitoring investigation, the
combination of signal processing method and ma-
chine learning algorithms have been widely
used'?). The signal processing method is very
important for ensuring the accuracy of the infor-

mation, and characteristics used in the analysis
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process and in the machine learning algorithm
help to reduce human interpretation errors and
provide automated monitoring strategies. Empiri-
cal mode decomposition (EMD), introduced by
Huang et al. , is a well-known signal processing
method used in monitoring studies due to its abili-
ty to analyse non-linear and non-stationary sig-
nals, and to address the limitations of the tradi-
tional fast Fourier transform (FFT) method™®
as well. The EMD method has been combined
with many machine learning algorithms for rota-
ting machinery monitoring, such as neural net-
work, Bayesian, support vector machine (SVM)
and extreme learning machine (ELM) 1,
However, the EMD method suffers from a
mode mixing problem and an end effect problem,
which in most rotating machinery applications are
due to the complexity of the rotating machinery

signals characteristict'?'!*

. In order to address the
issue of the EMD method, there are many impro-
vised versions of the method that have been pro-
posed, such as ensemble EMD (EEMD)!"'", com-
plementary EEMD (CEEMD)"!, partial EEMD
(PEEMD)M™' and local mode decomposition
(LMD)M, The EEMD method has been used
with neural network, artificial bee colony (ABC)
and SVMM " For the CEEMD method, SVM
and ELLM have been used as a combination for
monitoring strategies’?**),  For PEEMD and
LMD, variable predictive mode-based class dis-
crimination (VPMCD), neural network and SVM

have been used-?**"

. However, the end effect and
the mode mixing problems still occurred in these
improvised methods, which can lead to inefficient
diagnosis

and inaccurate monitoring and

process*,

Recently, an adaptive and non-recursive sig-
nal processing method called the variational mode
decomposition ( VMD) has been proposed by
Dragomiretskiy et al. ). The VMD method has
overcome the limitations of the EMD method by
having a unique decomposition procedure as com-
pared with other decomposition procedures.
However, the VMD method requires certain pa-

rameters to be determined, particularly the num-

ber of modes to be reconstructed. This becomes a
problem for the VMD method, as an inaccurate
set of mode numbers will affect the decomposition
result. This problem is still considered as open
for the VMD method"*?™,

used the number of dominant frequency charac-

Zhang et al. have

teristics of the signals as the number of modes for
the VMD method™’. Recently, Li et al. have
used the locally weighted scatter plot smoothing
method (LOWESS), which locates the number of
major peaks in the envelope spectrum, and uses
this as the mode number for the VMD meth-
od™,

selection method based on a correlation and ener-

In addition, Zhang et al. have proposed a

gy ratio to select the mode number for the VMD
method™®”.

This study therefore aims to propose a mode
selection number for the VMD method based on
the statistical parameter ratio (SPR) plot. This
proposed method is more effective in determining
the mode number for the VMD method, especial-
ly when used for complex signal characteristics
when compared with a selection method based on
dominant frequency characteristics and major
peaks in the envelope spectrum. The method can
also be used as an alternative for the selection
method based on correlation and energy ratio, and
it will provide a better visualization in selecting
the mode number for the VMD method. The sta-
tistical characteristics are used here as input for
the ELM algorithm for fault classification, and
the result has been compared with artificial neural
network (ANN). The comparison between fea-
tures extracted from the original signals, intrinsic
mode functions (IMFs) and variational mode

functions (VMFs) have also been compared.

1 Method Theory

1.1 Variational mode decomposition

The VMD method is a modern decomposition
tool which decomposes the vibration signal into
sets of sub-signals called VMFs. The sub-signals
define amplitude modulated and frequency modu-
lated (AM-FM) signals, as described in Eq. (1),
and the total practical VMF Bandwidth, BW as
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estimated using Eq. (3) according to Carson's
rule, Eq. (2)F%,

w, (1) = Ay, (1) cos(, (1)) QD)
where £ is the mode number, ¢,(¢) the a non-de-
creasing function, ¢/k(z‘) =0, the envelope is non-
negative A’,(¢) = 0. The change of envelope
A, (1) and the instantaneous frequency ¢’k(t) are
much slower than ¢,(¢). Therefore, the mode
component u, () can be considered as a pure har-
monic signal with amplitude A, (#) and instantane-
ous frequency ¢ (¢) .

BW amem =2(V [+ frn) (2)

BW aviom =2(V [+ frm + fam) (&)
where V f is the maximum frequency deviation,
fam the component of amplitude-modulated fre-
quency, and fpy the component of frequency-
modulated frequency.

The VMD method relies on three basic con-
cepts, i.e. , Wiener filtering, heterodyne demod-
ulation and one-dimensional Hilbert transform.
The method decomposed an input signal into dif-
ferent modes with a specific scale by assuming
that each mode is a finite bandwidth signal with a
pulse at the centre. Firstly, VMD uses Hilbert
transform to obtain the single spectrum for each
mode and to transfer the spectrum of each mode
to the fundamental frequency by using exponen-
tial correction. This will evaluate the bandwidth
of each mode and construct the constraint model

of the variational problem.

Zk”& [(8(1‘) —Q—i) . uk(t):|e*’“’k’ ”3}
s. t Zkuk:f‘ (4)

where w, is the centre frequency of the mode, and

min
Cupy oy ¥

f is the input signal. A quadratic penalty term
and Lagrange multiplier, A operator was intro-
duced to convert the constraint problem into a
non-constraint problem.
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The above equation found a sub-problem in

the sub-optimization method, called the alternate
direction method of multipliers (ADMM). The
solution to the sub-problem using Eq. (6) with
respect to u; and Eq. (7) with respect to w,

A HOED YSTHAREE
Wit (@) = 3 (6)
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By substituting the solution with the sub-op-
timization method, the full algorithm for the
VMD method was established as the following ex-
pressiont®®,

Step 1

Initialize {u}} s {u}} sA" s n<0.

Step 2 The value of u;» w,, and A is updated

according to the following formula

= bl

u, +—
. ~ ~ A (w)
Jl@) = 25w @) = 27 ul(w) +5
g >4 q
1+ 2a (w—wi)”’ ®)
. A ,
J w ‘u}fﬂ(w) *dw
o= L ©
J |y (w) | * dew

(@) =d () [ flo) — Djui @) ] 10)
k

Step 3  Repeat the iterative process from
Step 2 until the function converges based on con-

vergence criteria, which satisfies the condition of

S i — a3/

accuracy requirement.

ui |3 << e, whereeis a given

1.2 Extreme learning machine

ELM is a simple and efficient algorithm for
training single-hidden layer feedforward neural
networks (SLFNs), as proposed by Huang

1.7, SLFNs consist of the input layer, a hid-

et a
den layer and an output layer, in which the input
layer has n neurons corresponding to the n input
variables, the hidden layer has I neurons and the
output layer has m neurons corresponding to the m
output variables. The algorithm randomly gener-
ates the connection weight between the input and

the hidden layers, as well as the threshold of the

hidden layer neurons without any adjustment in
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the training process. It also obtains the optimal
solution by adjusting the number of hidden layer
neurons. ELM provides better generalization per-
formance at extremely fast learning speeds as
compared to traditional feedforward network
learning algorithms™*)., ELM helps to resolve
some of the issues of conventional gradient-based
algorithms for SLFNs, such as algorithms be-
coming unstable, and diverges when the leaning
rate is too large. The algorithm converges slowly
when the learning rate is small, and stops at the
local minima if it is located far above the global
minima, which is undesirable, over-trained and
time-consuming™®’. The algorithm of ELM can
be summarized as follows.

Given a training dataset with p classes
{zisy;} »i=1,+,Nandy, € R’. 2, € Rlisaq-
dimensional data point. If G(x) is an infinitely
differentiable activation function in the hidden
layer, then the output of SLFN is express as

L
0; = > BG (a;+b;sx;) (11)

i=1

where L is the number of hidden notes. and «; and
b; the jth hidden node's learning parameter as-
signed randomly. B, € R’ is the output weight
vector. The SLFN output of the matrix form can
be and expressed as
O—=Hp (12)
where
G(ay by 5ay)
H= :
G(ay sy, xN)

G(al‘ 9[),‘ ' X )

GQap +br sxn) | Nt
(13)
where H is called the hidden layer output matrix
of the network. Hj; represents the jth hidden
node with respect to the input samples, x, « g =
(BB s 1" andO= [0, +0; " s0x]". There-
fore, the objective function of ELM can be ex-
pressed as
B=HY=(H"H) 'H'Y (14)
where H™ and Y = [y1,ys, 5y, | T

Penrose generalized inverse of matrix H. The

i1s a Moore-

above output weight matrix g minimizes the cost

function O —Y]|.

2 The Proposed Method

The performance of the VMD method mainly
depends on the accuracy of the input parameters,
which comprise the balancing parameter (a ),
the time-step of dual ascent ( z), the number of
mode (K), the initial omega ( w ) and the toler-
ance. Some of the input parameters have a stand-
ard value. For example, the tolerance has a typi-
cal value of 1 X107°, the wis 0 (all w will start
with 0) and the ris 0 for noise-slack as mentioned
by Ref. [267]. The a can be set to 1 500 to have a
good decomposition result, as stated by Zhang et
al."”®! The number of mode is an important param-
eter for the VMD method. This is due to the
mode number determining the number of the
VMF that will be reconstructed by the VMD
method. Initiating an inaccurate number of mode
will cause the under-decomposed and over-decom-
posed problem of the VMD method, as well as
potential information losses from the input sig-
nal. Therefore, it is very important to have a
good mode selection method for the VMD meth-
od.

Here, a selection method based on SPR has
been proposed, as shown in Fig. 1. The statisti-
cal parameter used in this paper is described in
Table 1, in which x(n) represents a time series of
signals of the nth signal sample. In a recent stud-
y,» Zhang et al. have proposed a selection method
based on the correlation and energy ratio, which
also provided a good selection method for the
VMD method™’. This method calculates the cor-
relation and energy ratio between each VMF and
input signal and selects the high value for use in
the correlation and energy ratio plot. Here, SPR
calculates the ratio between the sum of the VMFs
and the input signal to produce the SPR plot.
Therefore, the selection method using SPR can
provide an alternative approach to selecting the
mode number for the VMD method. It also pro-
vides better visualization for selecting the mode

number.
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‘ Vibration signals ‘

!

Iterative decomposition procedure, VMD (i)
(i=1,2,3,,n)

!

| Statistical parameter ratio for mode selection, m ‘

!

| VMD with accurate mode number, VMD (m) ‘

i
/ VMFs(1) / / VMFs(2) / / VMFs(N+1) /

| Signal reconstruction from selected VMFs ‘

!

Statistical parameter features extraction for
training and testing sample

!

| Machine learning algorithm, ELM and ANN ‘

!

| Final decision on machine condition ‘

End

Fig. 1 Flowchart of the proposed method

Table 1 Statistical parameters

Statistical parameter Equation

RMS
Range max (x) — min (x)
N
1 Ty
N ; (x(n) — x)
Skewness - 3
S o)
(\/NHZ; (x(n) —x)
1< -
~ ; (x(n) —2)*
Kurtosis I

N
L\]E (1‘(n)*1)2)

n=1

max | x(n)

Crest factor

% r(n)?
Shape factor - o
‘L | x(n) |
N n=1
max | x(n)
Impulse factor 1 - ,
N ; | () |

max | x(n) |

Margin factor ( i] Z\) m)

n=1

2

The simulated signals have been generated

and used to validate the performance of the pro-

posed selection method. Eq. (15) describes the

simulated signals

S) =51 (t) + 5, (1) + 53 (1) 15
51 (1) =3sin(2x52) (16)

s, () =0, 4sin(27c200¢) 17
s3(2) =1. 2sin(2x50¢) as

A Gaussian white noise is added to the simu-
lated signals with a signal-to-noise (SNR) ratio of
30. The simulated signals are then iteratively de-
composed using the VMD method of different
mode set numbers, ranging from 1 to 10. The
other parameters used were initially set to the
standard value, as described earlier. The statisti-
cal parameter ratios are then calculated and plot-
ted against the number of modes. Fig. 2 shows
the simulated signals as described in Eqs. (15—

18).

»

Fig.2 Simulated signals

The simulated signals in Fig. 2 were decom-
posed into three different decomposition results
with the number of modes set to 3,4 and 5 in or-
der to simulate the problem of the VMD method
when using inaccurate mode numbers. Based on
the result in Fig. 3, the under-decomposed prob-
lem occurred when the decomposition was three,
and where the component of the simulated signals
was mixed within the reconstructed mode. When
the mode is 4 then the decomposition result is
good, as all the components of the simulated sig-
nals were reconstructed with the fourth mode, as

Gaussian noise, added. When the mode is 5, then
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over-decomposition occurred with an extra mode
having been reconstructed, although not signifi-
cantly affecting the components of the simulated
signals. It can thus be concluded that the under-
decomposed must be avoided in the VMD meth-
od, whereas the over-decomposed is fine, al-
though it is better to avoid this for the sake of en-

suring the accuracy of the decomposition result.

t/s
(a) Mode number being 3

\

t/s
(c) Mode number being 5

Fig. 3 Decomposition results with different mode

numbers

RMS

Range
Skewness
Kurtosis

Crest factor
Shape factor
Impulse factor
Margin factor

(=}
=
=
<
=
<
S
=
=
v
]
=
S
3

Viogde

Fig. 4 SPR plot for the simulated signals

RMS
Shape factor

Statistical ratio

Fig. 5 Selected SPR plot for a simulated signal

The proposed selection method was then ap-
plied to the simulated signals. This is shown in
the SPR plot in Fig. 4, which consists of eight
different SPR plots. To gain an adequately im-
proved visualization for selecting the mode num-
ber, the SPR plot has been reduced to two plots
consisting of RMS and shape factors, as shown in
Fig. 5. Hence these two SPR plots can provide
better visualization and thus they avoid confusion
in selecting the mode number for the VMD meth-
od. This is because the mode number will be se-
lected based on the first point, where the plot
starts to attain a steady state or a similar value.
In this case the mode selected for the simulated
signals is 4, referring to Fig. 5.

To further validate the proposed selection
method using SPR, more complex signals have
been used. These are the online gearbox vibration
signals downloaded from Acoustic and Vibration
Both the
healthy and the faulty signals are shown in Fig. 6.

database provided by Bechhoefer™!,

The proposed selection method then applies to
both the healthy and faulty signals and to the SPR
plot shown in Figs. 7,8.

Fig. 7 (a) and Fig. 8 (b) show all eight SPR
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Fig. 8 SPR plot for faulty signal

plots for the signals. The skewness and margin
factor plots have been removed as it does not

w a good relation between sum of VMFs and
input signals. Hence there are a further six SPR
plots that need to be considered. After looking in
detail at the six SPR plots, only three, which are
RMS, shape factor and impulse factor, can be
used based on their consistencies and adequate vi-
sualization. Finally, we decided to use only RMS
and shape factor and removed impulse factor to
avoid confusion during the selection process. In
addition, RMS and shape factor provide very good
visualization for selecting the mode number. The
final SPR plots are shown in Fig. 7 (d) and

Fig. 8 (d). However, these steps may need to be




No. 1 Muhd Firdaus Isham, et al. Variational Mode Decomposition for Rotating Machinery--- 45

repeated when new sets of signals are used be-
cause this may produce a different SPR plot, thus
resulting in yet another SPR plot that is suitable
for use. For this study RMS and shape factor will
be used.

To select the mode number, the first point at
which the plot starts to become steady, and the
RMS and shape factor become similar in value is
selected as the mode number for the correspond-
ing signals. This is based on the similarities con-
cept between the sum of VMFs and the input sig-
nals, at which particular point the value will be-
come either one or close to one. The similarities
concept basically defines when the VMD method
decomposes a signal into sets of VMFs and the
combination of VMFs produces a signal which is
Therefore, the
healthy and faulty signals shown in Fig. 6 will

similar to the input signals.

have 11 modes and 12 modes, respectively, as
shown in Fig. 7 (d) and Fig. 8 (d). Fig. 9 shows
an extra example of healthy and faulty signals.
The selected mode number for the healthy signal

is 9 while for the faulty signal it is 10.

Selected mode~

Mode number

shape fact
Selected mode

Mode number

(b)Y Faulty RMS a ;

Fig.9 Example of another online gearbox signals

3 Rotating Machinery Monitoring

To further validate the performance of the
proposed selection method, a comparison between

SPR and traditional peak searching method

(PSM) has been presented. As mentioned earli-
er, the gearbox vibration signals used in this pa-
per have been downloaded from Acoustic and Vi-
bration database provided by Bechhoefer™. The
PSM method is a basic traditional method used to
determine the mode number for the signals which
had been used in the early implementation of
VMD in rotating machinery applications™**!. In
this method, the number of dominant frequencies
in the frequency spectrum is used as the number
of modes for the VMD method. Basically, the
dominant frequency corresponds to the gear mesh
frequency (GMF) for gear applications and the
inner and outer race fault frequency, and the ball
pass frequency and the ball spin frequency for
bearing applications. Recently, an advanced PSM
has been proposed by Li et al."*"! using LOWESS,
in which the number of modes are determined
based on the number of peaks on the envelope
spectrum. For comparison, the PSM used is the
traditional PSM method using the frequency spec-
trum.

Based on Fig. 10, the number of peaks for
the healthy signals is three, while for the faulty
signals it is four. The number of peaks depends

upon the dominant frequency on the spectrum.

Fig. 10  Frequency spectrum of gearbox signals
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For a healthy spectrum, the dominant con-
sists of 1 XGMF, 2 X GMF and 3 X GMF. For a
faulty signal, the dominant consists of previous
GMF frequencies with the addition of a sub-har-
monic occurring at 500 Hz. Hence, the PSM ap-
proach gives the number of mode for the healthy
signals as three and for the faulty signals it is
four. In the comparison, the mode number for
the healthy signals will be set to three, and for
faulty signals it will be set to four. Fig. 11 sum-
marizes the comparison between the PSM ap-
proach and the proposed selection method based
on SPR. The results are shown in Table 2. The
performance was calculated based on Eq. (19)

SPyur,
SPInpul signal

Performance of the proposed mode determination

(19)

Efficiency ratio=

Table 2
method using statistical parameter ratio

Method SP, SP, SP; SP, SP; SP; SP; Ov Dataset

Statistical 0.91 0.99 0.98 0.95 0.94 0.98 0.92 0.95 Healthy

parameter 2,16 0,96 0.99 1.22 1.22 1.00 0.91 1.00 Faulty

Peaks 1.52 0.97 1.02 0.88 0.89 1.02 0.83 0.87 Healthy

searching 1. 83 0.94 0.98 1.19 1.16 0.98 0.88 0.96 Faulty

Healthy signals
faulty signals
[ ser | | Psm |
{ {
| kSPR | ‘ kPSM |
! {
| VMD decomposed with kg, and kg, |

Features from l
original signal | Features from VMF, 5, and VMF, o,

Eq.(5)

Fig. 11 Summary of the comparison

Based on Table 2, SP; is defined as the
skewness, SP, as the kurtosis and SP; is defined
as the crest factor; while SP, is defined as the
shape factor, SP; as the impulse factor; SP; as
the margin factor, SP; as the range; while Ov is
the overall performance. The result, shown in
Table 2, indicates that the proposed selection
method using SPR provides a more accurate mode
number than the traditional method. When the

VMD method decomposes a signal into accurate

sets of VMFs, the accuracy of the VMF charac-
teristics, together with the input signal features,
will have a high efficiency ratio value. The selec-
tion method using SPR recorded 0. 956 0 for the
healthy signal and 1. 001 3 for the faulty signal,
which outperforms the PSM method that recorded
0.872 1 for the healthy signal and 0. 961 7 for the
faulty signal.

To assess the condition of the gear, two ma-
chine learning algorithms have been used, which
are ELM and ANN. Both healthy and faulty gear
vibration signals have been used for experimental
simulation in this paper. The type of fault in the
gear systems is a wear fault, and is shown in
Fig. 12. The healthy and the faulty vibration sig-
nals have been divided into 120 sample signals:60
samples for healthy and 60 for faulty. Each signal
sample will be decomposed by using the VMD
method into sets of VMFs. The proposed method
of determination using a statistical parameter
ratio has also been used to determine the number
of modes for each sample of healthy and faulty
signals. The statistical parameter listed in Table
1, has, as distinct from the RMS, been used as
input features for both ELM and ANN. The
number of modes for each sample of the healthy
and faulty signals has also been used as input fea-
tures. Thus, there are eight features that have
been used with two output targets, healthy and
faulty. The detailed-on training and testing sam-
ple used for both ELM and ANN is summarized
in Table 3.

Fig. 12 Wear on gear system"!

The input features summarized in Table 3
have been fed into ELLM and ANN algorithms.
The basic ELM algorithm used with the ELM
type is set to a multi-classification and radial basis

function, and has been used as an activation func-
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tion. For ANN, the basic ANN tools in MAT-
LAB have been used with the default setting. The
number of neurons has been set to eight for the
ANN algorithm. To show the distinction and su-
periority of the mode determination method using
a statistical parameter ratio, as well as the VMD
method of gear fault diagnosis and classification,
some comparisons have been made. As shown in
Table 2, the data has been recorded into three
different sets, totaling 360 samples. Set 1 repre-
sents the statistical features sample from the re-
constructed VMD signal. The first and second
modes have mainly been used for signal recon-
struction of the VMD. This is due to the frequen-
cy characteristic of each VMF. Here, the interest
frequency is within the 1 X GMF, 2 X GMF and
3 X GMF, which has been covered by the first and
second modes of the VMD decomposition result.
Both the healthy and faulty signals show similar
VMF frequency characteristics, which ensures
that the first and second modes are used for both
healthy and faulty signals in this paper. Set 2 re-
presents the statistical features sample from the
original signal without any decomposition method
and Set 3 represents the statistical features from
the reconstructed EMD signal. A cross-correla-
tion coefficient has been used to select the most
significant IMFs. The first four highest cross-
correlation coefficients have been used for the sig-

nal reconstruction of EMD.

Table 3 Training samples and testing samples details

for ANN and ELM

Algori- Train Test Operating
Data Label
thm sample sample condition
45X9 15X9 Healthy 0
Set 1
45X9 15X9 Faulty 1
45X9 15X 9 Healthy 0
ELM  Set 2
45X9 15X9 Faulty 1
45X9 15 X9 Healthy 0
Set 3
45X9 15X 9 Faulty 1
Set 1 65% of 15%/20% Healthy 0
7 120X9  0f120X9  Faulty 1
65% of 15%/20Y Health 0
ANN  Serz 0070 of 1676/20% Y
120X9  of 120X 9 Faulty 1
Set 3 65% of 15%/20% Healthy 0
7 120%9  0f120X9  Faulty 1

The three data sets have been used to com-
pare the two different machine learning algo-
rithms. For ELM, the sample was normalized as
required by the algorithm. The overall perform-
ance of these three datasets is described in Table
4 for ELM, and in Table 5 for ANN. Set 1 de-
fines VMD-ELM and VMD-ANN, set 2 defines
Signal-ELLM and Signal-ANN, while set 3 defines
EMD-ELM and EMD-ANN. In Table 4, A is de-
fined as an average accuracy of between 1 to 200
neurons. B is defined as the average when the
neurons are set to eight (to run 30 times with the
neurons set to eight in order to avoid the tweak
problem) and C is the accuracy value when the
neurons are eight. By default, a particular num-

ber of neurons is equal to the number of features.

Table 4 Overall performance of datasets using ELM algo-
rithm %
Training perfor- Testing perfor-
Overall
Method mance mance
A B C A B C All
VMD-
98.44 85.41 92.22 93.38 85.78 86.67 90.32
ELM
EMD

) 98.66 89.07 84.44 91.75 77.67 70.00 85.27

Signal-

98.22 89.48 90.00 75.22 81.78 83.33 86.34

Table 5 Overall performance of datasets using ANN algo-
rithm %
Method Train  Validation Test Overall
VMD-ANN  96.2 94. 4 95.8 95.8
EMD-ANN  79.5 88.9 87.5 82.5
Signal-ANN ~ 93.6 72.2 83.3 88. 3

For all the data sets, VMD-ELM and VMD-
ANN provide
(90.32% and 95. 80%) when compared with Sig-
nal-ELM, Signal-ANN, EMD-ELM and EMD-
ANN. This shows that the statistical parameter

better classification accuracy

characteristics extracted from the reconstructed
VMD signal are more accurate compared with
those characteristics extracted from the original
signals and the reconstructed EMD signal. It can
be thus concluded that the decomposed signal
using the VMD method helps to reduce signal

noise and complexity without eliminating the use-
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ful information within the signal. Accurate pa-
rameters and the number of modes set for the
VMD method are pivotal for ensuring the per-
formance of the VMD method and for avoiding
any elimination of the useful information follow-
ing the decomposing process, thus reducing the
accuracy of the VMD method in fault classifica-
tion. Figs. 13, 14 also show the performance of
datasets with the ELM algorithm in terms of a
different number of neurons, which in turn shows
that the VMD-ELM outperforms the Signal-ELLM
and EMD-ELM.

Number of hidden neu

c) EMD-ELM

Fig. 13 Testing accuracy for datasets with different

number of neurons

120
€11 MEUrons

(a) VMD-ELM

1 € W01
of hidden neurons
) Raw signal-ELM

Jumber of hidden neur

c) EMD-ELM

Fig. 14  Training accuracy for datasets with different

number Of neurons

Tables 6—8 show the confusion matrix for
the ANN algorithm. Therefore, VMD with an
accurate initial mode will provide better diagnosis
and classification of gear applications. It thus of-
fers better and more reliable machine condition

monitoring for gear applications.

Table 6 Confusion matrix for EMD-ANN

Actual
Class
1 2
1 50 11
Predicted 2 10 49
Conflict 0 0
Sensitivity/ % 83.3 81.7
Accuracy/ % 82.5

Table 7 Confusion matrix for Signal-ANN

Actual
Class
1 2
1 58 12
Predicted 2 2 48
Conflict 0 0
Sensitivity/ % 96. 7 80.0
Accuracy/ % 88.3

Table 8 Confusion matrix for VMD-ANN

Actual
Class
1 2
1 59 4
Predicted 2 1 49
Conflict 0 0
Sensitivity/ % 98. 3 93.3
Accuracy/ % 95.8

4 Conclusions

All experimental data were simulated by
Acoustic and Vibration database (gear datasets)
and used for the VMD method, as well as for the
input for the machine learning algorithm. A sta-
tistical parameter ratio has been proved as a suit-
able and adequate indicator for determining the
number of modes for the VMD method. Howev-
er, the most suitable statistical parameter ratio
needs to be selected first, based on the properties
of the signal. For this research, RMS and shape
factor are the most suitable as they provide im-

proved visualization for determining the mode
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numbers. The machine learning algorithm has al-
so been used to offer good, reliable machine con-
dition monitoring techniques. VMD-ELM and
VMD-ANN show better diagnostic and classifica-
tion performance with an advantage of 5%—10%
in accuracy. In summary, an accurate initial
mode numbers set using a statistical parameter
ratio and input features from the reconstructed
VMD signal are found to be superior and more ac-
curate, indicating that the proposed method can

improve machine monitoring techniques.
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