Feb. 2018

Transactions of Nanjing University of Aeronautics and Astronautics

Numerical Analysis of Dry Friction-Induced Vibration of
Moving Slider-Elastic Annular Beam System

Sui Xin', Ding Qian'*"

1. Department of Mechanics, Tianjin University, Tianjin 300350, P. R. China
2. Tianjin Key Laboratory of Nonlinear Dynamics and Control, Tianjin 300350, P. R. China

(Received 20 December 2017; revised 9 January 2018; accepted 20 January 2018)

Abstract: A disc-pad friction system is modelled as that two moving pads act symmetrically on an annular beam
with flexible boundary condition. Simulation procedure is proposed to deal with the moving interactions and calcu-
lation is carried out by using the finite difference method, which shows that only the first-order mode vibration of
the beam can be induced. Then the partial differential equation of motion of the disk is reduced to a first-order
mode vibration system with time-varying stiffness. As the disk speed is decreased below the critical speeds, the
relative equilibrium of the pad on the disk loses its stability and stick-slip type limit cycle vibrations are resulted in

all directions’ movements. Acceleration of the disk motion on the frictional instability is also investigated. The pe-
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riod of stick-slip vibration with large amplitude will be shortened with higher moving deceleration.
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0 Introduction

A friction system usually exists in the engi-
neering such as braking system, where the fric-
tion-induced instable vibration has a negative in-
fluence on the braking system, especially the

(1), Many researches have been

disc-pad system
carried out for this problem with analytical, com-
putational and experimental techniques. Various
models including the single-mode approximation,
the beam model, the plate model™ and the finite
element model were established to investigate the
brake system of rotating brake disc acted by fixed
pads. The early achievements on disc brake sys-
tem are attributed to the dry frictional stick-slip

]

self-excited vibration®* and unstable structural

61 Stick-slip refers to a fluctuation of

vibration
friction force or sliding velocity with time or slid-
ing distance changing"™'.

In view of the stick-slip mechanism, the model
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of rigid body-rigid transmission belt has been
widely used. In 2001, a dynamic system is pres-
ented by Galvanetto to get the mechanism of dis-
continuous bifurcations, where stick-slip vibra-
tion can be affected by the non-smooth bifurca-

8] Hereby, Stribeck-type coefficient is con-

tions
cluded to analyze the system stability and deter-
mine the critical speed of a dynamic model with
two-degree-of-freedom™ .

However, the use of rigid belt model ignores
the interaction between the brake pad and disc in
transverse direction. To overcome this shortage,
elastic or flexible brake disc models are adopted in
recent investigations. A braking system with a
flexible thick plate for disc and two continuous
beams for pads by using the Mindlin's theory is
established by Beloiu and Ibrahim to account for
the influence of flexible belt on the braking be-
haviors. The braking noise and response in time

and frequency domains are investigated analytical-
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ly and experimentally by considering the influence

of non-linearity and randomness of contact

forcest ",

Nayfeh, Jilani and Manzione reduced
the order of a circular flexible uniform thickness
disk and analyzed its dynamical behavior analyti-

[ Recently, an elastic annular disc model

cally
is adopted for a pre-loaded mass-damp-spring sys-
tem with separation and reattachment by Li,
Ouyang and Guan to investigate friction-induced

They

found that separation often occurs in low speed,

vibration using the improved model'*,

which is caused by friction during the unstable vi-
bration. Larger in-plane stiffness and pre-load
bring earlier separation and instability. In addi-
tion, the frequency of disc is increased with the
effect of separation. However, the contact effect
between the slider and disc and internal reso-
nances were not considered.

During braking process, the time-dependent
nature of the contacting interface in the pad-disc
system is important and must be considered even
if lower relative speed™. From the point of the
rotating disc, its vibration is activated by the cir-
cumferentially moving action of the rigid pads.
Influence of the moving force on brake stability
attracts more and more attentions and the moving
method is adopted in finite element method and
experimental approaches. The deflection of a
beam with moving force and the resonance veloci-
ty of the moving load are analyzed by Wayou,

Tchoukuegno and Woafo .

An approximation
solution of moving oscillator was investigated by
Pesterev and Bergman to describe the variation of
displacement and shear force in a one-dimensional
distributed system with an arbitrarily varying
speed'™. Chen et al. analyzed a viscoelastic beam
moving axially using the method of multiple
scales. They found that the instability frequency
intervals are influenced by the axial speed and the
beam coefficient!'™. Using the finite element
method, unstable frequencies of a braking system
inspired by moving loads can be obtained based on

L8] A linear com-

the system eigenvalue analysis
plex-valued eigenvalue formulation for a disc with

moving load is established by Cao et al. to calcu-

late the stationary components of the disc
brake'™. Based on the finite difference method
and complex eigenvalue analysis, stability and

1 are carried out

uncertain parameters analyses''®
for disc-pad systems with moving-interactions.
Accordingly, Ouyang investigated the instability
of a brake disc by presenting the relationship be-
tween eigenvalue and disc’s rotating speed-'™.

However, up to now, the flexible coupling
between the disc and pads and the moving interac-
tions have not been considered simultaneously in
one dynamical braking model. This paper deals
with a rigid-flexible coupled braking system, and
focuses attention mainly on motion of the pads
moving on the elastic disc. The disc is simplified
as an annular beam and the friction between the
beam and pads are determined using a Stribeck-
type friction model. Then the 1st order Galerkin
reduction is applied for the beam based on result
of moving load simulation. Influence of accelera-
tion of the disc rotation on the frictional instabili-
ty of the pad is investigated.

The values referred in this paper are shown
in Table 1.

1 Dynamic Modals

1.1 Pads and disc

During braking, the pads move circumferen-
tially along the outer edge of the elastic disc. So
the disc can be simplified as an annular beam
which is supported on uniform and continuous
{lexible boundary (to simulate the distribution of
flexible constraint effect from the inner part of
disk )27,
shown in Fig. 1 (the boundary supporting is not

The pad-disc coupling system is

included). The pads move at relative speed V' and
vibrate independently in horizontal directions X,/
X, and vertical directions Y,/Y,, and the rota-
tional angles are @,/ @, "*"!. For the disk, only its
transverse displacement W, is considered, because it
influences the pads’ motion directly during braking
contact. The contact stiffness involves the tangential
ones K, and K,, and the vertical one K,,. Parameters

and their values of the system are listed in Table 1.
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Table 1 Parameters

Symbol Physical meaning Parameter value
X/®/sgn Horizontal coordinate/ Angle coordinate/ Sign function
X, /Y, /& Horizontal /vertical/angle displacements of upper pad
X,/Y,/ ®, Horizontal /vertical/angle displacements of lower pad
W,/ V/a Transverse displacement/ speed/ deceleration of disc
P,/ P, Contact pressure of the upper/lower pad
F,/ F, Contact friction force of the upper/lower pad
Q./0,/Q, Natural frequencies of the one pad
wm /e Contact friction coefficients between upper/lower pad and disc
K./ K, Horizontal /vertical stiffness of pads

K./ (kN +m-=+rad ")
C./C/ (Nesem™
C./(Nesem 'erad ")
¢/(Nesem )
Ko/ Ky/(kKNem ")
K./(kN+m ")
M/kg/ I, /(kg + m®)
o/(kg+m )

E/ GPa /A/ m*
¢/ m/I/m'
fo/ fe
v, /(mes )
L/m/h/m /b/m
A/ A

Angle stiffness of pads

Horizontal /vertical damping coefficients of pads
Angle damping coefficient of pads

Damping coefficient of disc

Tangential contact stiffness between pads and disc
Vertical contact stiffness between pads and disc
Mass/rotational inertia of pads

Density of disc

Young's modulus of disc/ Area of the disc
Thickness of pads/ Rotational inertia of beam (disc)
Maximum /minimum static friction coefficient
Stribeck velocity

Length / Thickness of the beam/Length of pad

Displacements of the pads moving to disc

3.5 X 10
100
200
200
3.0 10
3.0 X 10
0.1/0.25
7.8 X 10°
196/ 8 X 107
0.01/1.7x 107
0.5/0.25
0.5
1.00/0.016/0. 10

F,
K. (Xz - ‘K“
tl
b, + K. @, +C.b, + K, (X
»4,'_.:;7§j// 92 Wd FI 34 Wd ZV
e AT T
@E;‘V«o !
- 7N aaZWd>+ IW,
) c
Fig.1 Pad-disc coupling system a X’ aT
The equations of motion of the pad-disc cou- D¢
pling system are deduced as where
MX, + K, X, +CX, +Pisin®d + p[:J.%a,db i= 1.2
F .
KQ(X]* ‘K1‘>sgn(V*X1)cos®1:O (la) e ;{
) u ‘ F =y J =R = 1.2
MY, +K,(A +Y )+ C)Y, + Picos d, + -

| P |

tl

K. (X1 —

)Sgn(V—X])sine‘D] -0  ab

| . |
K.

K, (Xz —

varying with the time.

6, + K. @ + C.d, + K., (X

) sgn(V —

1f‘F1‘)><1:o

Do

(1o

MX,+K, X, +C.X, + P,sin @, +

X,) cos @, =0(1d)

MYZ +Ky(YZ *A2)+(:\,YZ +P2COS®2 +

) sgn(V —X,)sin®, =0 (le)

_ ‘FZ‘ q _
: K. )X 2 =0
(1D
(’)ZWA _(’}ZWd
aX3T+V9 a Xt T

- [K(‘n ay +Kcn a2+(F1 +

}6(X*a) (2

a; = min (0,Y, —W,)
a = max(O,Yz 7Wd) '

and 6=0¢(T) represents the position of the loads
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1.2 Non-dimensional Form

To rewrite the equations conveniently, intro-
duce the dimensionless variables and parameters
W=W,/hsx=X/Lix, =X,/L;x, =X,/L;y =
Yi/hsy, =Y, /hs0 =@ 50, =P34 = Ay /h; A, =
Ay hst = T«/m;v ZVW;
m =cLh V1/pAEI ; 3, = 2wh VpA/EIl;
pAv® h*/EL; 5, =apA h*/El 355 = L* h*/EI; p =

h/Lsy =EI/oAL* h*;P, =P, /h; P, =P, /h;F, =

F\/hiF, =F,/h; a —pAah® /EI (3)
Substituting Eq. (3) into Egs. (1, 2) yields
Mypoxs + K, z1 +C, v/po 21 + g Pisin ) +
— ﬂ‘}‘{i‘) sgn(v— ;) cos o =0 (4a)

tl

sz (1'1

M?]o:}‘/1+Ky(A1+y1)+Cy 705/1+P1COS§01+

x  |F| T
Klz(% K. )sgn(v x1) sin g =0 (4b)

I>UO¢1+KS¢1+CS«/UT¢1+

qK‘Z . 7’1‘1;1‘ _

T(Lll S )—o (4c)

M770i'2 + K.z, +C, 7o x4 s ﬁz sin @2 +

K, (19 fﬂ";{iw sgn(vfb) cos ¢, =0

tl

(4d)

M"]OS}Z + Ky (y2 *Az)ﬁLcy L 3"2 + PZCOS§02 +

KlZ <%— ‘;:‘ )Sgn(‘U*IZ)Slnng:O (46)
< . qK\Z
157]”502 +K5§02 + C, «/777502 + —Lx, —

th)o

K, 46
W . h® W IW I*W I*W
o T o T oo (’72 drar T g T
W - .
M W)*r/; [Ke (a1 +a2) + [ Frsgn(v—ax,)+
Pizsgn(v*i)](?f}ﬁ(x*&)zo (5)

1.3 Friction

Many models have been proposed to describe
the friction properties, such as the coulomb fric-
tion (before occurrence of relative displacement

between the contact parts), static friction (no rel-

ative velocity from static to relative motion) and-
Stribeck effect, etc.

The Stribeck effect refers to a phenomenon
that the friction coefficient decreases. The nega-
tive slope in relation between the friction and rela-
tive velocity is known as the main reason of fric-
tion instability. The Stribeck-type friction coeffi-

cient 1 (v,) can be expressed as

po)=f.+(f.—foe )’ (6)
where f. and f, are the minimum and the maxi-
mum static friction coefficients respectively, v, is
the Stribeck velocity, and v, the relative velocity.
When §=1, Eq. (6) is also known as Tustin index
model. The friction coefficient varies with relative

velocity as shown in Fig. 2.

£ A HO)

T

Fig. 2 Static friction and Coulomb friction with Stribeck effect

2  Moving Interaction and Galerkin
Reduction

2.1 Moving load simulation

Considering a force I moves along a straight
beam. To analyze its response under the moving
load, the beam is discretized into p elements. Let

dz be the unit time and dx the unit space, the nod-

al force F is subsequently allocated in every unit
time.

For the moving load acted system, two con-
ditions will be dealt with during calculation:

(1) Cdx = vdr (C is a positive integer). In
this case, the load moves from one discrete point
to the Cth one after each time step dz.

(2) dax = Cvdt (C is a positive integer). In
this case, after each time step dt¢, the load moves
at a place between the discrete points e and e + 1.

Dividing the space step dx into C equal sub-
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spaces, the load moves at the next sub-point after
every time step dz. When the load Fmoves at the ith
one, (e+i/Cdx) wherei= 1,2,++,C , the load F will
be resolved to the points e and e+ 1 as F=0—i/OF

and F+1 = (i/C)F , respectively, see Fig. 3.
P |
€ e+l )
T .

(a) Condition of Cdx=vdt
idx 7

~ Gl
Fe Feﬂ
e e+l
x| _x,

(b) Condition of dx=Cvd¢t

O

Fig. 3 Moving load simulation

Corresponding to the moving load simulation
mentioned above, the uniform and continuous
flexible boundary of the beam should be dis-
cretized as p elastic springs with stiffness £, as
shown in Fig. 4. % depends on the material prop-
erties and p =50 in the following analysis. Then
the boundary and continual conditions can be ex-
pressed as

WLA,/ :Wl,]+1
JWM-M‘ =W, n

Wl.jfl 7W1.] :WLA,jH 7WLA.]
dz dr

where 1, 7 and LA are the leftmost, the 7th node

D)

and rightmost node in beam’s horizontal direc-
tion, respectively. j and j+1 present the jth and

(j+1)th time moment, respectively.

Fig. 4 Continuous flexible boundary discretized as p

springs

The disc partial differential Eq. (5) is solved
by using the finite difference method and the ordi-
nary differential Eq. (4) is solved by Runge-Kutta
method, respectively. And the dynamical behav-
ior of the braking system with moving actions be-
tween the parts can be simulated with the same

time step dt = 0. 000 1 and space step do = 0. 02.

The transverse response of disc solved by finite
difference method is transferred to contact pres-
sure and friction force items of pads, and then
Eq. (4) can be solved. Take ¢ = w , then the
transverse response of the beam is induced by suc-
cessive change of the contact position between the
pad and disc. Let K, =5.0 X 10" kN/m, K, =
3.0X 10* kN/m, v=2 and 1, and simulation
shows that both the x direction response of the
pad and the transverse response of the annular
disc are periodic vibration as shown in Figs. 5, 6.
The spectra of motions are also presented in the
figures. It should be noted that except the difference
of the equilibriums in velocity axis, the friction-induced
dynamics of two pads are same with each other. So we

present only the upper pad's motion in this paper.

x/10°

5
4
3
2
1
0

0 5 P 10 15

(a) x displacement of the upper pad

—
(=]

s, . —Response 1
» — Load position 1
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o 4 et - Load position 3
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e
i

Transverse response/10™*
|
(=) (=)
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'
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G

|
—
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(b) Transverse deflection curve of the disc
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v 3.0} q 4
2
E 25}
= 20
e}
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0.5F
1 e .
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12 ¢
o 10}
S
2 8t
9
£ 6}
a
p
2t
0 1 2 3 4 5

Jf/Hz
(d) Spectrum of disc in the y displacement
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Q
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z
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(f) Spectrum of disc in the w displacement

Fig. 5 Response of the system under moving interactions
as relative-equilibrium occuring for the pad (v = 2)
6
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S0t \
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oL S e .
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3.0
525
820
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0.5
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S = o= BN
W (=) (%] (=)
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N w £ W

—
T

0 1 2 3 4 5
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(f) Spectrum of the disc in the y displacement

Fig. 6 Response of the system under moving interactions

as friction-induced limit cycle occuring for the pad

(v=1)

Calculation shows that the natural frequen-
cies are2, =3.1 Hz, 2,=2.7 Hzand Q,=1. 3 Hz
for horizontal, vertical and angle direction mo-
tions of the pads, and 1. 25 Hz (the first order)
and 2. 50 Hz(the second order) for transverse mo-
tion of the disk, respectively. One finds that in
spectrums under higher speed sustained moving
interaction, say v = 2, motions of the pad and
the disc in all directions are mixed with disc’s fre-
quency in steady state, because the vibration fre-
quencies are their natural frequencies and disc’s
frequency in corresponding directions, respective-
ly. However, as the moving speed v decreases to
1, the friction-induced limit cycle vibration occurs
for the pad, and common frequency 3. 05 Hz ap-
pears in all directions of the pad’s motion. It
should be noted that even though the frictional in-
stability has happened for the pad, the disc still
vibrates in the first-order mode. So the equation
of motion of the disc is discretized to the first-or-
der mode by Galerkin model reduction in the fol-

lowing section.
2.2 Approximate reduction equations

Take the trial function (Eq. (8)) to approximate

the first-order transverse vibration of the disc.

W(x.t) =M@) [@sm(%x)Jr gcos (%1) }

(8)
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Substitute Eq. (8) into Eq. (5) and multiply
the weighted function on both sides, then in-
tegrate it from 0 to L in x, so the ordinary differ-
ential equation of transverse vibration of the disc
is resulted as

LVI(0)/2 + LM (/2 + [(h*/2L) Qa/L)'" —
2x% py/L — 2 7 g /LIM() — po g (/L) (F, +

F)sinCnut /L 4 /2)M(@) — g, K., sinQrot /L +
/1) (aor T ) =0 9
where

apy =min(y, — M) sin(2ro/L + x/4) ,0)

a0 =min(y, — M) sin(2ns/L + =/4) ,0)

Approximation of first-order mode function

V2 /2 [sin@rx/L) + cos@rx/L) ] is very close to
the desired solution of transverse deflection of the
disk at low speed. The time-varying function
items included 6(¢) in Eq. (9) reflect or interpret
the fact that the space position of contacting load
between the pads and disc varies with time ¢, after
the vibration description for the beam is changed
from a partial differential equation to an ordinary
differential one. Because the stiffness value varies
periodically with time, the natural frequency of
the pad' s horizontal direction cannot keep in a
fixed

2.71 Hz during integration, as shown in Fig. 7.

value but fluctuates periodically near

Accordingly, the system equilibrium positions
will also fluctuate slightly (see the example of the
angle equilibrium of pad in the
—2.678 6X107°%).

vicinity of

Eqgs. (4, 5) are solved using the Runge-Kutta
method, and the dynamical behavior of the bra-
king system with moving interaction between
parts can be investigated numerically. The com-
plex eigenvalue analysis is carried out referred to
Ref.[22] and the eigenvalues are 0. 22-+19. 58i at
v=1 and —0.27+19. 58i at v=2 (assuming sign
functions are positive). The bifurcation diagram
in Fig. 8 reveals horizontal motion of the pad un-
der braking process with the decrease of speed w.
The points are sampled when the velocity of hori-
zontal motion is zero. The instability of motion of
the pad happens and the stick-slip limit cycle is re-

sulted at v=1. 25, which is also known as the

2725
« 2.720}
%2.715
g 2.710F
§- 2.705}

= 2,700}

2.695 L . L L
0 20 40 60 80 100

(a) Natural frequency of pad’s horizontal direction

Equilibrium/10™

-2.678 6 L L L
9.1 9.2 9.3 9.4 9.5
t

(b) Angle equilibrium of the upper pad

Fig. 7 Fluctuations

I S

x,/10°

5
4
3
F ol
1
1]
2

.0 1.8 1.6 1.4 1.I2 1.0

x1

Fig. 8 Bifurcation of horizontal direction of pad
critical speed.

3 Numerical Analyses

3.1 Non-internal resonances

To reveal the variation of the coupling system
dynamics during velocity decrease process, the
time histories, spectra (Fig. 5(a) and Fig. 6(a)),
and phase portraits (Fig. 9) of the selected vibra-
tion characteristics of the upper pad are presented
at the speeds v=2 and v=1, respectively. When
v=2, vibrations of pads will be damped, and a
quasi-periodic motion occurs in this non-stationary
case, which may be attributed to sustained oscilla-
tion of the contacting force resulted from the disc
transverse deflection. The amplitude of upper pad in
x direction keeps vibrating with small amplitude, un-
til changing to be an equilibrium at about 2. 5 X 107" .

When v decreases to 1, Stribeck-type friction
effect induced by self-excited vibration (or stick-
slip) appears and limit cycles with rather large vi-
bration amplitude for all parts of the system are
resulted(see the presented horizontal vibration of

the pad in Fig. 9).
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Fig.9 Phase portraits of the pad

3.2 Acceleration of disc rotation

Fig. 10 shows the time histories of braking
processes of the pads and disc at decelerationa =
—0.005 anda = —0. 002, respectively. One finds
that the higher the braking deceleration is, the
faster the disc speed reaches to zero and the shor-
ter the stick-slip vibration lasts. Obviously, the
stick-slip vibration with high amplitude is more
extensively at lower speed, where small "jitter"
phenomena happens many times. As the speed
approaches zero, the pads cannot stop vibration
immediately. In fact, the vibration lasts for a
short time under action of the relative friction

force between the pads and disc.

6
s 1
2 Sl ol
4+t w0
R -1860 880 900
S 2
=
(/)3
0 200 400 600 800
t
(a) x displacement, a2 = —0.005
-4.6 5
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. 850 900
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=
-52+¢
-5.4 1 1 1 L
0 200 400 600 800
t

(b) y displacement, @ = —0.005
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L2
S0
.05t s,
o 900 950
< 00
-0.5}F
-1.0 . A . .
0 200 400 ; 600 800
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6
. 5
i % 0
- " s lulh.u L.l
o ) 2360 2380 2400
=
ot
0 500 1 000t 1500 2000
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48} .

5.1
2000 2100 2200 2 300

1=
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-52F
-54 L L . .
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t
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1.0
; 2
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05f ¥,
. 2000 2200 2400
=
= 00
<
-0.5F
-1.0 1 1 . .
0 500 1 000t 1500 2000

(f) ¢ displacement, a = -0.002

Fig. 10 Dynamic responses of the upper pad

4 Conclusions

The disk-pads coupling braking system with-
Stribeck-type frictional interaction with each other
is investigated in this paper. The disk is simplified
as an annular elastic beam and its vibration under
action of moving loads is simulated using the fi-
nite difference method. Then Galerkin reduction
is used for the disk vibration equation and numeri-
cal simulations

are carried out for the 7-DOF

equations. Conclusions are summarized in the fol-
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lowing.

(1) Mainly the first-order mode vibration of
the annular beam can be induced by frictional
moving loads. By using the Galerkin reduction,
the first-order mode vibration equation of the disk
is resulted with time-varying stiffness, which re-
flects the moving contact between the pads and
disk. As a result, the system equilibrium posi-
tions and natural frequency of the disc will fluctu-
ate periodically during time integration.

(2) As the disc speed decreases below the
critical one, the relative equilibrium of the pad in
the disc loses its stability and stick-slip type vibra-
tion will be resulted in all directions’ movements.
As a counterpart of the pads, the disc vibrates al-
so with large amplitude transversely.

(3) During non-stationary braking process,
braking deceleration shortens the period of stick-
slip vibration but enlarges the vibration ampli-
tude. In addition, small "jitter" phenomena can

happen many times during process.
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