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Abstract; Stability is usually in the sense of Lyapunov's asymptotical stability, thus the solutions starting from
points close to a stable equilibrium may have a very long transient. In the applications of time-delayed feedback
controls, it is important not only to determine the stable regions in the gain plane or gain space, but also to find out
the abscissa that can be used as an index of stability. Based on the D-subdivision method, this paper proposes a
simple algorithm for finding and labeling the stable regions in feedback gain plane with abscissa. The labeled sub-re-

gions with smaller abscissa are better in applications. The main results are presented for the controlled pendulum
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or inverted pendulum under a delayed feedback, and are illustrated with two case studies.
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0 Introduction

Time delay exists commonly in control appli-
cations, such as in digital controller where the
time delay is resulted from using sampling and ze-
ro-order holder, and in human-interaction sys-
tems where the time delay is produced due to the
delay of human's response. Dynamical systems
with time delays are called time-delay systems,
which can be classified into two categories: Re-
tarded type and neutral type. On one hand, the
presence of time delay may deteriorate the sys-
tem's performance and even destabilizes the sys-
tem, which may occur even when the delay is ver-
y short'. On the other hand, the effect of time
delay on the system dynamics may be positive,
such as in the study of sway reduction of
cranest?’. Thus, stability analysis of time-delay
systems has been one of the major concerns in

many control applications.

Usually , stability is in the sense of Lyapunov's
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asymptotical stability. An equilibrium of a time-
delay system of retarded type is asymptotically
stable if all the characteristic roots of the corre-
sponding linearized system have negative real
parts only. This is true for time-delay systems of
neutral type under certain conditions. Many
methods and criteria have been established for the
stability analysis of time-delay systems, such as
the D-subdivision method™, the method of sta-
bility switches™', and the stability criteria devel-
oped on the basis of Argument Principle, inclu-
ding the Nyquist criterion™™, Integral estimation

71 ete. The

D-subdivision method works effectively in deter-

criterion'™, Stepan-Hassard theorem

mining the stable regions in a parametric plane
such as the feedback gain plane of a controlled
system by using the critical stable conditions.
The method of stability switches is preferable
when only one parameter is focused. The stability
criteria are used mainly for stability test of given

time-delay systems, but they can also be used for
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studying the problems of stability switches™. In
some cases, the solutions starting from points
close to a stable equilibrium may have a very long
transient.

Abscissa is a real number defined as the real
part of the rightmost characteristic roots of a dy-
namical system, and it is an index for measuring
stability. An equilibrium of a time-delay system
is asymptotically stable in the Lyapunov’s sense if
the abscissa is negative, the smaller (the larger in
absolute) the abscissa is, the better the stability
is, and the solutions starting from points close to
a stable equilibrium will decay to the stable equi-
librium faster. Thus, in the control design of a
delayed feedback control, it is important not only
to determine the stable regions in the gain plane
or gain space, but also to find out the pair of opti-
mal feedback gains that minimizes the abscissa
within a given stable region. Roughly speaking,
all the above-mentioned stability criteria can be
used for the calculation of the abscissa of a given
time-delay system, among them the integral esti-
mation criterion seems more effective in imple-
mentation. These criteria could be used directly
for the calculation of the abscissa one-by-one at
each gridding node, but seemingly it is not easy
to obtain the optimal abscissa and the optimal
feedback gains because manual intervention seems
necessary in the calculation. Thus, more effective
method or algorithms are needed to find the opti-
mal abscissa and the optimal feedback gains with-
in a stable region in the gain plane. This paper
presents a simple algorithm for labeling the stable
region in feedback gain plane with different ab-
scissa on the basis of the D-subdivision method,
and it is found that the sub-region labeled with
the smallest abscissa is preferable in applications.
For clarity in presentation, the main results are
introduced for the controlled pendulum or invert-
ed pendulum with delayed feedback. The pro-
posed algorithm works also for labeling the stable
regions of a pair of feedback gains of any con-

trolled systems with delayed feedback.

1 Labeling of Stable Regions

Pendulum and inverted pendulum are two
very popular models for many mechanical sys-
tems/structures. When a delayed acceleration-ve-
locity-position control is used for controlling a
pendulum or inverted pendulum, the controlled
system is described by

mx (1) + cx (1) + k(1) =—ka (t — 1)) —
—kyx(t—13) (@)

where m,c,k are the system parameters, r; > 0,

kd«i‘ (t - Tz)

72 =0, 73 == 0 the time delays, and k,,k,.%, the
feedback gains. Eq. (1) with £ > 0 corresponds to
a pendulum and with # <Z 0 corresponds to an in-
verted pendulum. Eq. (1) is called retarded (or
neutral) type when £, =0 (or b, 7% 0). The char-
acteristic equation is
D) =po Q) F kA% e kA e kb, e
(2)
where p, (1) =mA* + A + k. The abscissa is de-
{ined by
a=max{ZA(A): D) =0}
where Z(1) represents the real part of complex
number A . D(}) has infinite many roots, but the
number of roots with positive real part must be
finite. Thus the abscissa @ must be finite"*). For
the case of | k£, | <1, the time-delay system is as-
ymptotically stable if ¢ <Z 0. Without loss of gen-
erality, assume that ¢ << 0 whenr, =0,7, =0,75 =
0. Then conditions on &, sk, %, can be obtained by
using the Routh-Hurwitz criterion. Due to the
continuous-dependence on the delays, the time-
delay system keeps asymptotically stable if the

delays are small enough.
1.1 Introduction of D-subdivision method

For given small delays, the stable regions-
with respect to the gains &, .k, .k, can be obtained
by using the D-subdivision method, where the
boundaries of the stable regions are plotted by
using the critical stable curves determined from
D(iw) =0(i* =—1). For a delayed proportional-
derivative (PD) feedback with equal delays,
k, =0and r, =73 = , for example, the bounda-
ries of the stable regions are determined by
A(D(w)) =0 and J( D(iw)) = 0 (where J(z)
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stands for the imaginary part of complex number
z), which give
k,=(nw" — k) cos(wr) + cwsinlwr)

po— (mw® — k) sin(wr) — awcos(wr)
L=
w

when w 7% 0, and for w =0 one has
k,=—k

The critical curves divide the gain plane (%, ,
k,) into many open regions, in which none, one
or more are stable. For finding the stable region
and labeling the stable region with abscissa, the
o-critical stable curves, determined by D(¢+iw) =
0 or equivalently #(D (s +iw)) =0, (D (s +iw)) =
0, will be used, they are plotted by {(k,.k,) :0<C
w <+ oo}, where

k= (mw® +moe” — kwcos(awr) e

w

(mo® +co? +ho +mw’c— cw?)sin (wr) o

w

A _ @Cmws + cw)cos(wr) .
Ra — e
w
(mo” +w—maw’ + k)sin(wr) oo
w

Similar results can be obtained for a delayed
PD feedback with k£, =0 and r; =7.7; =27 , and
for a delayed acceleration-derivative (AD) feed-
back with £, =0 and r, =7; =, as well as the one
withk, =0and r, =¢,7; = 2.

For any point passed by a o-critical stable
curve, the corresponding time-delay system has a
characteristic root with real part s . The o-critical
stable curves divide the gain plane into a number
of sub-regions., which can be classified into two
classes: the os-stable ones for which the corre-
sponding D(}) has roots with real parts less than
o only, and the s-unstable ones for which the cor-
responding D(A) has at least one root with real
parts larger thans . The O-stable ones are the sta-
ble regions in the Lyapunov’s sense. The stable
regions as well as the g-stable regions can be de-
termined graphically.

The o-critical stable curves with different
values of s may intersect with each other, or do
not intersect with each other at all. For the case
when intersection happens, the intersect point

should be marked with the color of the g-critical

stable curve corresponding to the largests . First-
ly. choose two real figures o, << 040 max > 0 such
that the abscissa a for all parameter combinations
in a given region of the parameter plane is in the
interval [ 6min s 6max |+ then the process of labeling
the stable region can be completed in the follow-

ing major steps.

1.2 Subdivision of given region via ¢-critical sta-

ble curves with negative o

Starting from ¢ =¢,,;, to 6 =0 by a small step
o » and for each node of ¢, the g-critical stable
curves are drawn, and each point on the g-critical
stable curve is marked with a designated color in
the color set. Letg, > g, » if the ¢,-critical stable
curve intersects with the g,-critical stable curve,
the intersect points should be marked with the

color of the g,-critical stable curve. If 5., is cho-

sen small enough (or equivalently, ‘o‘mm is large
enough), every point in the given region of the
parameter plane is labeled by the color of the o-

critical stable curves withs € [omin,0].

1.3 Erasure of unstable regions via g-critical sta-

ble curves with positive &

Points passed by a g-critical stable curve with
positive ¢ correspond to the case when the time-
delay system has at least one pair of characteristic
roots with positive real part, so they are not be-
long to the stable regions. Further effort is re-
quired to erase the unstable points from the given
region of the parameter plane labeled by the color
of the s-critical stable curves with e & [6mins0] »
by using white color of the s-critical stable curves
withe € [O’Gmax] .
Omex 10 0 ) by a small step do , and for each node

For g from 0 to g, (or from

0. plot the g-critical stable curve by white color.
Then, all the points in the given region of the pa-
rameter plane have been marked with different
color characterizing the stable region, showing

different level of the abscissa in [gmns0) .
1.4 Asymptote issue

The os-critical stable curves can be either con-
tinuous or discontinuous. For the continuous
case, the stable region can be labeled simply by

using the above two steps. If there are some
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break points on the g-critical stable curves, just
like in the applications to time-delay systems of
neutral type, the plot in these points will create
some asymptotes. For generality, assume that
the o-critical stable curves are plotted by (f (s,
w)»g(o,w)) as w varies from 0 to + oo, and they
have discontinuity. The first asymptote is defined
by
k(o) (x— xy) + y, =0

where (20, y,) = (limf(s,w) . limg(s,w)), and
w—>0 w0

k(o) is the derivation of the derivative of y from
the implicit function D(s) to x , calculated by
dD(s)

Jdx
dD(s)
dy

where x and y are the gain values of the feedback

k(o) =—

control.

Except the first asymptote, stability swit-
ches do not occur at the both sides of the asymp-
totes, which are not a part of critical stable
curves, so we have to avoid these asymptotes
when plotting the o-critical stable curves. For a
fixed o, let 0 <<w.1 swes s *** swa s *** » be the roots of
the denominator of f(s,w) and g(ssw) + then all
the points (f(o, w,)»g(os ws)) with i = 1,2,
should be avoided in plotting the g-critical stable

curves with this .

2  Algorithm

Below is the algorithm for labeling the stable
region in feedback gain plane of a time-delay sys-
tem with abscissa. N,K are two integers satisfy-
Ing omin =N * & and o = K * 65.

INPUT:. The color set C; og-critical stable
equations: x = f(s.w) »y = g(6,w) ; the range of
considered region S; frequency length M ; fre-
quency step length dw ; negative integer N ; posi-
tive integer K ; step length 65 .

OUTPUT: The labeled stable region S .

Step1 Forn=N,N-+1,--,K do Steps 2

Step 2
or identified by ¢ in C , else choose white color.
Step3 m=0,1,--,M, do Steps 4—5.

Stepd w<m=*dw.

c<nx*d . lf6<0, choose the col-

Step 5 Plot point ( f(s,w) »g(s.w)) with the
designated color.
Step 6

Terminate.

Output the plot of S.

If the denominators of f(s,w) and g(s.w)
have nonzero real root w, for w with a fixed ¢, Step
4 will be replaced with

Step 4
to Step 3.

< 0w turn

w<—m*dw . If ‘w*wg

When plotting the g-critical stable curves
with the available mathematical software, we
draw lines rather than isolated points. To avoid
plotting the asymptotes, we calculate the break
points of f(s,w) and g(s,w) with the index of w
firstly, and then draw the piecewise curves. A
successful application of the proposed algorithm
requires a suitable estimation of 6., and o . In
many applications, the delays are small, thus the
estimated values of s, and o... can be chosen
based on the abscissa when all the delays equal ze-
ro. When the delays are not small, the estimation

of 6min and o, 1s left for further investigation.

3 Examples

In the following two case studies, only the
simply connected stable region close to the origin

of the gain plane is considered.
3.1 Example 1

Consider the following controlled system in
dimensionless form
() + 280 () +2(1) =— pxr(t —rr) —dx (1t — 1)

(€D

where p and g are the gain values of position and
velocity respectively, and r is the ratio coefficient
of position delay and velocity delay. The delay
values are assumed small, and only the stable re-
gion containing the origin of the parameter plane
is considered. The characteristic function of sys-
tem (Eq. (3)) is

D) =2+ Qe+de™ A+ pe™+1

Separating the real and imaginary parts of
D(s+iw) =0, and solving the gains p,d from lin-
ear equations Z(D (s + iw)) =0, D(s +iw)) =0

gives
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((a)2 +o‘2 — l)wCOS (wz')
cos((r — Dawt)w + sin((r — Dwr)o

(6 +266" +w'o+ 0+ 2 & )sin(wr) o
cos((r — Dawt)w + sin((r — Dwr)o

_ ((— 26 — 28) wcos (rwt) o
cos((r — Daot)w+ sin((r — Dar)o

(6" +2& — " + DsinGwr) o

cos((r — Dawt)w— sin((r — Dawr)o

emr +

p:

Fig. 1 shows the stable regions close the ori-
gin in the gain plane of system (Eq. (3)) withr=
1 and different parameter combinations, labeled
with abscissa within [—6,0] by using the pro-
posed algorithm. The algorithm can be imple-
mented with Matlab. Fig. 2 presents the labeled

stable regions of system (Eq. (3)) withr=2, la-
beled with abscissa within [ —8,0]. Both cases
show that the increase of r not only shrinks the
stable region but also decreases the abscissa, and
on the contrary, the increase of & not only enlar-
ges the stable region but also increases the abscis-
sa. In addition, Figs. 1—2 show that the stable
regions of system (Eq. (3)) with » =2 are much
larger than the corresponding ones with » = 1.
This means that from the viewpoint of stable re-
gion, a delayed PD feedback with the delay in po-

sition feedback double of that in velocity is prefer-

able in applications.

3
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3.2 Example 2

Consider the following delayed system in di-
mensionless form
2 +2a @)+ 1=—ar(t—rc) —dr(t— 1)
€]
where a and p are the gain value of acceleration
and velocity respectively, |a|<C1, and ris the ra-
tio coefficient of acceleration delay and velocity
delay. The corresponding characteristic function is
D) =04ae™)A* +Q2e+de ™A+ 1
By solving the linear equations Z(D(¢+iw) )=
0,9(D (s + iw)) =0 with respect to a,d, one has

Labeled stable regions of system (Eq. (3)) with r=2, ¢y, =

p 4
(d) £=0.4 £=0.8

—84 Gmx=151n [—8,300] X[ —4,40]

_ (0" +6* — Dwcos(ar) -
(weos((r— Dar) —osin( (r — Dar)) (o +6°)

(' +2¢&"+o+ oo+ 260" )sin(er) o
(weos((r— Dar) —osin((r— Dar)) (6* + o*)

2(&6° + o+ Ew”)wecos(rur) o
(weos((r— Dar) —osin( (r— Dar)) (o* +6°)

(0' + Q26" +266—1) o +6' +266° +6°)sinCrwr) o
(weos((r— Dar) —osin((r — Dar)) (0® +6°)

Fig. 3 shows the stable regions close the ori-

a =

d=—

gin in the gain plane of system (Eq. (4)) with r=
1 and different parameter combinations, labeled
with abscissa within [ —19,0] by using the pro-
posed algorithm. Fig. 4 presents the labeled sta-



No. 1 Wang Qiang, et al. An Algorithm for Labeling Stable Regions of a Class of+:- 99

2, labeled
with abscissa within [ —13,0]. Again, both cases

ble regions of system (Eq. (4)) withr=

show that the increase of r not only shrinks the
stable region but also decreases the abscissa, and
on the contrary, the increase of & not only enlar-

ges the stable region but also increases the abscis-

sa. In addition, Figs. 3—4 show that the stable

2
=

regions of system (Eq. (4)) with r =2 are much
larger than the corresponding ones with r=1. This
means that from the viewpoint of stable region, a
delayed AD feedback with the delay in accelera-
tion feedback double of that in velocity is prefera-
ble in applications, which is agreement with the

result given in Ref. [9].
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Fig. 4 Labeled stable regions of system (Eq. (4)) with r=2, ¢pn=—

4 Conclusions

An algorithm based on the D-subdivision
method is proposed for labeling the stable region
in the plane of feedback gains of dynamical sys-
tems under a delayed feedback control with differ-
ent abscissa. Two main steps in the labeling
process are required, one is subdivision of the sta-
ble region, and the other is erasure of the unsta-
ble regions. The labeling simply uses a color in a
designated color set to plot the g-critical stable
curves, and can be easily implemented with com-
puter codes. A successful application of the pro-
posed algorithm requires a suitable estimation of
the abscissa. The two case studies show that for
the controlled pendulum with a delayed feedback,

the stable region can be substantially enlarged if

(d) =04

a a

(e) £=0.6 (f) 5=0.8

13, Gmax =15 in [—1,1]X[—4,40]
the delays are properly chosen. The algorithm
works for labeling the stable regions of a pair of

feedback gains for any controlled systems with a

delayed feedback.
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