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Abstract: With the development of wireless sensor network (WSN) applications in intelligent monitoring, addition-
al support for the low power consumption wireless nodes can be provided by piezoceramics that harvest vibrational
energy. First, we describe the effects of stimulation variations on piezoceramics and the energy harvesting circuit
set-up. Two types of piezoceramics were stimulated at different frequencies and amplitudes to obtain the power
output characteristics. Then, the energy harvesting circuit was studied and coupled with the piezoceramics. A
double peak phenomenon was found in energy harvesting using a hard piezoceramic which gave a direct proof that
the nonlinearity of the piezo constant should be considered in application. Finally, energy storage and output were
studied and analyzed. Electronic components for the WSN were recommended according to the output power and
the application. The results will give an instruction for piezoceramic energy harvesting under various stress ampli-
tudes on its implementation.
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0 Introduction

In piezoceramics, the piezoelectric effect al-
lows to harvest electricity energy from ambient
vibrations to supply low-power consumption de-
vices. Wireless sensor networks (WSN) for mo-
nitoring the status of the environment have ad-
vantages such as distributed sensing capabilities,
ease of deployment, real-time processing, a small

size, a low cost, and high reliability™?.

In long-
term monitoring, the duration of monitoring is
limited to the batteries’ life span. A complete
system has energy consuming elements such as
sensing, communicating, and processing mod-
ules. With the development of integrated circuit
and communication technologies, the required

power consumption is decreasing. For example,

compared with the former versions, Bluetooth

4.0 saves 90% of the energy while its transmis-
At the same
t®* . broadband

and various environmental vibration

sion rate and distance increase.
time, energy extraction circui

technique™*

U518 in energy harvesting systems devel-

resource
opment augments the extraction percentage of en-
ergy, supplying more electricity for the devices.
With the energy consumption decreasing, extrac-
tion energy increasing, and the power-manage-
ment strategies optimizing, a self-powered sys-
tem is developing rapidly.

To supply wireless sensor networks with a
ubiquitous energy source, vibration can be turned
into electricity using a piezoceramic. Lallart and
Guyomar et al.l'™ designed a self-powered
structural health monitoring (SHM) system, in-
cluding the autonomous wireless transmitter

(AWT) and the autonomous wireless receiver
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(AWR), powered by a piezoceramic. Two pieces
of piezoceramic were integrated into every module
for energy harvesting. During health monitoring,
data were transmitted to the base station. Hu et
al. 1" studied the sandwich structure design based
on piezoelectric nanogenerators and gave an illus-
tration of photon detecting and environmental
monitoring self-powered systems. These promis-
ing achievements urged more researchers to study
self-powered systems.

Here, we primarily concentrate on the low-
frequency energy harvesting where piezoceramic
power output has been analyzed and a self-pow-
ered system design has been proposed. Energy
harvesting experiments, wireless sensor networks

and their design will be illustrated.

1 Energy Harvesting from Piezo-

ceramic

1.1 Configuration of electro-mechanical conver-

sion

There are two types of piezoelectricity: di-
rect piezoelectricity and converse piezoelectricity.
Direct piezoelectricity is that the piezoceramic
generates electric charges on the electrode due to
the applied mechanical forces. To simulate the
stimulating vibrations, an experimental setup has
been established to measure energy harvesting in
the following section.

For a bulk piezoceramic used in this study.
the lumped model is modeled as mass-spring-
damper-piezo. Considering the boundary condi-
tions, the constitutive equation for direct piezoe-
lectricity is

stz :Cgss —e E
1D33 :6335+€§3E

where the superscripts "E. S’ represent the con-
p p P

@)

stant electric field and constant strain, respective-
ly and the subscript "33" represents the polariza-
tion direction coincides with the mechanical
stress. T3 1s the mechanical stress, D,; the
electric displacement, E the electric field, and S
the strain. The coefficient ¢ is the piezoceramic e-

lastic coefficient; and the coefficients e and e are

the piezoelectric constant and the dielectric con-
stant, respectively. The piezoelectric coefficient
can be considered constant at low (frequency &
energy) excitations, both electrical and mechani-
cal. However, nonlinearity in the piezoelectric

coefficient emerges at high excitations!? ' 2%,
The output current, I,, can be calculated
with the displacement u, force factor «, piezoce-
ramic capacitance C,, and V the voltage across
the piezoceramic.
. L dV
IUZOIM—C()E (2)
When the rectifier circuit reaches its steady-state,
I, is the current going through the load. By inte-

gration of Eq. (2), the charge is

T,/2 _& B
L Ldi= -+ 5 (3)

where V| is the voltage across the load, R, the
load, and T, the period. Combining Egs. (2,3),
the rectified V| is a function of displacement am-
plitude Uy , excitation circular frequency w, given
in Eq. (4)
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the harvested power can be expressed as
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where dy; is the piezoelectric charge constant, /
the thickness of a bulk piezoceramic, A the cross
sectional area of the piezoceramic, and Ty the
mechanical stress amplitude. It can be concluded
that the harvested energy E,, the piezoelectric
charge coefficient, and the mechanical stress obey
the following relation

E oc (dy « T’ 7

1.2 Experimental setup

Fig. 1 shows the schematic diagram of the
experimental setup.

The fixture provides a preload force on the
piezoceramic and holds the other instruments.
The waveform generator ( TFG1005 DDS, SU-
ING) controls the voltage amplifier (XE-501-A,
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Fig. 1 Piezoceramic energy harvesting experimental setup

Newpi, Ltd.) to drive the piezo-actuator (PSt-
150/10/80VS15, Newpi, Ltd.). The force sen-
sor (XFC200R, Measurement Specialties, Ltd
and ARDI154, Measurement Specialties, Ltd.)
measures the applied force. The oscilloscope
(SDS 2104, SIGLENT) monitors all the varia-
tions. The rectifier bridge and L TC3588 (Linear
Technology Corporation) are used as the energy
harvesting module that uses the data acquisition
system (2638A, Fluke Corporation) to measure
the current and voltage.

Two types of piezoceramic, p-43 and PMgN-
51 (Weifang Jude Electronics Co., Ltd.), were
used in the experiment. &6 X5 mm conductive
copper tapes were adhered to both sides of the sil-
ver electrodes, as shown in Fig. 2. The coeffi-

cients of the piezoceramics are shown in Table 1.

Fig. 2 Piezoceramic sample

Table 1 Parameters of piezoceramic sample
Parameter/Sample p-43 PMgN-51
el /e 1 700 3 800
dy; /(10 C/ND 390 500
g3/(107% Ve m/N) 11.2 10. 6
Q. 200 70

1.3 Experiment and results
1.3.1

The standard energy harvesting circuit con-

Full-bridge rectifier standard circuit

sists of a full-bridge rectifier circuit and a capaci-
tor. The piezoceramic is connected in series.
Measuring the electrical characteristics of the
load, Ry , allows calculation of the output power,

as shown in Fig. 3.

»Z b

2

DSZ§ Dj§

Fig. 3 Standard energy harvesting circuit

t o

In Fig. 3, the capacitor has a capacitance of
47 uF. The voltage is measured and the data is
shown in Fig. 4, at a frequency of 10 Hz with am-
plitude of 10 MPa.
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Fig. 4 The open circuit voltage for a standard energy har-

vesting circuit

Here, the capacitor, C,, is used as the en-
ergy storage element that then acts as a steady
power source for the following section of the cir-
cuit.

The capacitance of the capacitor should be
chosen according to the power consumption, volt-
age stability, and operating voltage. To illustrate
the effect of the capacitance on the output voltage
variation, simulations are shown in Fig. 5.

Fig. 5 shows the pattern of a charging capaci-
tor in an energy harvesting circuit. In a WSN
node, the capacitor value should be carefully se-
lected while considering the leakage resistance

and duty ratio.
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Fig.5 Simulations for different filtering capacitors

1.3.2

Load-carrying capacity is an index used to

Load-carrying capacity

evaluate a power source. Load-carrying capacity
influences the energy extraction circuit. The
standard energy extraction circuit is evaluated
with the capacitor C=22 uF, the preload stress
T=25 MPa, and the amplitude of 10 MPa at a
frequency of 10 Hz, acting on the sample of p-43
piezoceramic. After calculating the voltage and

current, the output power is shown in Fig. 6.
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Fig. 6 Influence of the load on output of energy

In Fig. 6, the load has a large effect on the
output power in a nonlinear manner. For our
specimen and conditions, the best load selection is
approximately 8 M, which leads to a maximum
output power density of 261.7 pW/cm®.

1.3.3 Output power evaluation

The output power of a piezoceramic depends
upon the stress amplitude and the frequency. To
satisfy the power consumption of a WSN node, a
comprehensive evaluation of the piezoceramic out-
put should be made. With this evaluation, the
appropriate electronic components can be selected
as the piezoceramic acting as a power source. In

this paper, two types of piezoceramics have been

With the
standard circuit where C= 22 ,F, R, =8 MQ,
p-43 (AT = 20 MPa) and PMgN-51 (AT =

tested under various stimulations.

10 MPa), the output power of the piezoceramic has

been measured. The results are shown in Fig. 7.
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Fig. 7 Output of piezoceramic samples under different fre-

quencies and stress amplitudes

Compared with PMgN-51, p-43 is a hard
piezoceramic. As the amplitude increases, p-43
has a double wave crest in which the first peak is
much larger than the second. In contrast, we can
see that PMgN-51 has only one peak after which
the output power rapidly decreases because of the
piezoceramic depolarization under high stress. Be-
cause the output power 1is proportional to
(ds; T)*, we can conclude that d;; of the p-43 de-
creases rapidly when the external stress reaches a
certain threshold and then its decline slows down
until the next threshold. The soft piezoceramic
reached its turning point at a lower stress and its
d,; is greatly affected by the stress. The nonlin-
earity of the material coefficients should be taken
into consideration when necessary given the ex-
pected external excitation on the piezoceramic.
The hard piezoceramic has the ability to be de-

ployed in a large range of stress stimulations.
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2 Self-Powered WSN System

2.1 Transmission media

Given the requirements of the energy con-
sumption and the operating conditions, the trans-
mission media should be carefully selected. RF is
most transmission

currently  the popular

media™®!. In addition to being license-free, infra-
red/optics has the advantages of easy set-up and

low cost™!,
2.2 WSN system design

Here, both the hard and soft piezoceramics
were used in the energy harvesting experiment
and the power supply characteristics that were
preliminarily studied indicate that more than
800 uW could be generated by a piezoceramic
(J6X5 mm). Many electronic components reach
their rated operating conditions at hundreds of
microwatts. Even milliwatt-level consumption
components may work with energy management
strategies. After considering the piezoceramic
output power characteristics, LLTC3588-1 (Line-
arity) can be used as the energy extraction mod-
ule, low energy consumption PICI8LF14K50
(Microchip) can be used as the MCU, and
A110LRO9A (Anaren) can be used as the inte-
grated RF module, which has a temperature sen-
sor embedded. In addition, BMA222E (BOSCH)
can be chosen as a motion state monitoring sen-
sort?. To simulate the operating state of an em-
bedded-integrated wireless node’ s energy con-
sumption, a 470 kQ resistor is used to represent
the sleeping mode. The working mode is simulated
by two resistors connected in parallel, 470 kQ with
200 Q controlled by a switch, as shown in Fig. 8.

The energy storage of the extraction circuit
and the power consumption of the simulated WSN
are shown in Fig. 9. In Fig. 9, "energy storage’
indicates all the energy stored in the capacitor
C,=47 pF, while the "energy consumption” is due
to the wireless sensor node. With low energy
consumption electronic components and an energy
management strategy, piezoceramics are promis-

ing power sources for wireless sensor networks.
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Fig 8 Simulations for self-powered WSN
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Fig. 9 Simulations of energy storage and power consump-

tion in a self-powered node
Piezoceramics realize the self-powered goal.

3 Conclusions

Energy harvesting from a piezoceramic is in-
vestigated under various stimulations, especially
at high stress and low frequency. The results
provide a guideline for using a piezoceramic in dif-
ferent stimulation states and the output power at
those chosen states. For the embedded wireless
sensor/actuator in the infrastructure, a bulk pi-
ezoceramic is a good choice as a power source in
an infrastructure with a characteristic vibration.
According to the energy harvesting experiment
and simulations, 1 cm® could accommodate all of
the mentioned electronic components in a self-
powered wireless sensor. The double peak phe-
nomenon of p-43 should be taken into considera-

tion, especially in stimulation environments with
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a large range. Future studies will concentrate on

the self-powered node and WSN design.
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