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Abstract; Electrostatic monitoring technology of particle charging information can facilitate online monitoring of
aero-engine, which effectively enhances engine fault diagnosis and health managements. Unlike traditional engine
state monitoring technologies, aircraft engine monitoring by gas path electrostatic monitoring not only covers the
predicted information source itself, but also detects the information that can provide an early warnings for initial
fault states through gas path charging levels. This paper establishes a non-stationary time sequence change-point
model for anomaly recognition of electrostatic signals based on change-point theory combined with difference meth-
od of non-stationary time series. Finally, electrostatic induction data were utilized by the engine life test for a parti-
cular aircraft to validate the proposed algorithm. The results indicate that the activity level and the event rate were
0.5—0.8 (nc) and 50% , respectively, which were far greater than 4—12 (pc) and 0—4 % under normal working
conditions of the engine.
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0 Introduction

Condition monitoring and fault diagnosis of
aircraft engines are effective means to guarantee-
ing air safety and reduce maintenance costs. En-
gine monitoring system (EMS), prognostics and
health management'! (PHM) have been recently
further developed toward condition monitoring
technology to realize condition-based maintenance
(CBMO™,

diagnosis technologies hold advantages in aviation

Although traditional monitoring and

safety and economic efficiency, they are limited
by the principle of monitoring means with many
defects.

In bore-detection based on internal damage
detection, the light source is limited by the endo-
scopic diameter. The internal structure of the en-
gine is complex, and it presents an irregular geo-

metric shape. Under the illumination of point
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light sources, many shadow areas will be easily
generated in the image. These drawbacks hinder
the extraction of image features and the subse-
quent diagnosis=*.

In vibration monitoring and diagnostic tech-
nology, abnormal vibration (i. e. , vibration gen-
erated under normal engine operation) is accom-
panied by strong background signals, making ab-
normal signals difficult to capture accurately™*,
In addition, measured vibration signals can reflect
only the overall vibration of engine, and the ab-
normal vibration is concealed in the macroscopic
system-level vibration. Therefore, this technolo-
gy is not ideal for fault localization.

In gas path performance parameter monito-
ring technology'™, the deficiency of this method
lies in its poor reaction capability to short-term

]

performance change of the engine®”. Moreover,
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the system structure of the aircraft engine is ex-
tremely complex and the operating environment is
harsh, leading to poor fault diagnosis capacity and
localizing depth.

Gas-path electrostatic monitoring is an ap-
proach for intelligent health management of on-
line monitoring early-stage faults. An increasing
amount of literature on its methodologies, appli-
cations, and experiments has been presented in
recent years. Vatazhin et al."' presented the
theoretical method, laboratory modeling and sim-
ulation of electrostatic monitoring for engine.
The electrostatic monitoring technology was also
used in engine diagnostics through monitoring the
overall electrostatic charge level. Considering the
great potential of electrostatic monitoring, Fisher
et al. " conducted an on-line monitoring experi-
ment on gas path debris using electrostatic sen-
sors. They reported that the electrostatic monito-
ring technology would be an important PHM

1. 20 applied this technology to

tool. Powrie et a
the PHM system of aero-engines. The inlet deb-
ris monitoring system and exhaust debris monito-
ring system (EDMS), using the electrostatic mo-
nitoring, were also developed and applied to a
certain type of joint-fighter. Wilcox et al. ' in-
vestigated the application in industrial gas tur-
bines for gas path condition monitoring and dis-
cussed the sensor installation issues. Addabbo et
al. ") presented a theoretical modeling of an e-
lectrostatic gas path debris detection system and
conducted an experimental validation. A similar
research was conducted by the RMS Center of
Nanjing University of Aeronautics and Astronau-
tics in China. Wen et al. "' optimized the elec-
trostatic sensor design and conducted a simulated
experimental study with a simulation test bench.
Fu et al. """ conducted a verified electrostatic
monitoring experiment on a certain type of turbo-

23 conducted a verified e-

jet engine. Yin et al.
lectrostatic monitoring experiment on a certain
type of civil turbofan engine accordingly, and
found a blade case rubbing fault and combustion
fault.

Combining gas-path electrostatic with the

change-point analysis method™! of time sequence
AR (P) model, we diagnosed the occurrence of a
corresponding fault and further localized the dam-
aged component and the damage degree. The pro-
posed diagnosis method has the following advan-
tages: Guaranteed air safety, reduced cost, and

improved service efficiency of aircraft, and so on.

1 Formulation of Change-Point Model

The change-point model is defined as "one or
a number of points that suddenly change in the
model”. This problem involves a sequence of sam-
ples in a chronological order. At an unknown
time ¢, the mathematical features or statistical
distribution of these samples suddenly change.
Thus, ¢ is called the change point at this time.
For convenience, in the unary linear regression
change-point model, we assume that ; X is an in-
dependent variable, Y is a dependent variable,
and n times of observed values are taken; i. e. ,
(X;,Y), i=1,2,,n.
1, (X;,Y,) follows the linear re-

The model is set when
1=1,2,,m—
gression model, that is
Y.=a, +06 X, +e; @)
When i=m,m—+1,-; (X;,Y;) follows line-
ar regression
Y. =a, +0, X, + e, (2)
where ¢; is a random error in the model, a; and a,
are the constant terms, b, and b, the independent
variable coefficients of the equation, and Y, is the
i-th valuation of the dependent variable. At least
one of a;, = a, and b, = b, is false. At point m, if
the coefficients of this regression equation are un-

equal, m is called the regressive change point.

2 Time Sequence Change-Point Model
2.1 Difference calculation

Most time series are non-stationary, and
they could not accord with the precise demand to
analyze aero-engine condition by change-point
model of stationary time series. To realize a re-
fined analysis of the aircraft engine state, station-
ary processing of the sample data must be con-

ducted. At present, non-stationary time se-
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quences are analyzed by using certain factor de-
composition method, and difference method is a
convenient and effective technique for information
extraction. After the original data are stabilized
with difference method, the stable time sequence
change-point model (we take AR (P) as an exam-
ple) can be used to analyze the identification of
change points.

For any p-order auto-regression AR (P)
process

T, =g T, T T, e (3)
where z, is the observed value at time t; p the or-
der of auto-regression; ¢, ***, ¢, are the auto-re-
gression coefficients; and ¢, is the white noise se-
ries.

The discrete-time sequence of p order differ-
ence is equal to p order derivation of the continu-
ous time series. According to Cramer decomposi-
tion theorem, certain information in the sample
sequence {x,} can be sufficiently extracted from
the p order difference. Taking first-order differ-
ence as an example

X, =VX, + X, €5)

This equation indicates that the essence of
the first-order difference is an auto-regression
process, that is, historical data {x,} after one-
phase delay are used as independent variables to
explain the change in date value {x,—,} in the cur-

rent phase. Thus
d

VX, =A—B)'X,= D>, (=D CiX,; (5

izo
where B is the backward shift operator, B”"X, =
X, ,,» m the time span, V the backward differ-
ence operator, VX, =X,—X,.,=(1—B)X,, d
the times of difference. The AR (P) model can
be obtained through the deformation of Eq. (4).
Under suitable difference order operation, certain
formation contained in the data can be sufficiently
extracted by applying Cramer decomposition the-

orem.
2.2 Model analysis

Random dynamic data in time sequence are
arranged according to time order. According to
before-after correlation of dynamic data, a con-

venient and feasible AR (P) ( p-order auto re-

gression model) model is used to establish the
time sequence change-point model. Its descrip-
tions are as follows: A sequence of observed val-
ues {x,}» t=1,2,+, N meet the following auto
regression model

Jgolf/ 1 +§02~T/ 2 +"'§0pfz p+az

1< t<m
x, =<, , , (6)
1901 Tt P2 X2 + QYT iy + a,
m<t<N
If d): (9017 "’990/,)T¢ d?/: (lev "'5§D;;>Tv

Eq. (6)is called the discrete auto-regression time
sequence change-point model, where m is the
change point in the model, coefficients ¢= (¢ »
., and ¢ = (@, . ¢,)" represent auto re-
gression parameters, and residual error a, is the

white noise series.
2.3 [Estimation and inspection of change points

(1) Roll investigated sample sequence
First, the sample length n and the investiga-
tion interval length n, are determined. That is,
the sample data sequence is set as {X,}.t=1,2,
, N. the total data sequence length = is the
length of the phase I sample, the interval n, (1, <<
n<N) is rolled to divide the total data sequence
into several subsequences: The first phase {x,
Xys ty 2, 1 the second phase {x,o 1. 2,00, s
Zpints o+ the m-th phase {X(—1ynr1s Timnize
s Zm vniats the "rolling” analysis is conducted
on the subsequences.
(2)Establish time sequence AR (&) model
@O When k£ =1,2, -+, m—1,k<n, parame-
ters @u s @i sttt s of AR (k) model are calculat-

ed as follows

@11:‘01
k k
_ _ _ —1
Wt 1.6+1 = (PkAl - § Ok + 1 j‘%‘) (1_ § (ijkj>
j=1 =1
d)kfl.]:d)kj*d’k+1vk+1d’kak+1fj;] =1,2,-k

D)
In Eq. (7). p; is the autocorrelation function

and is estimated through the samples as follows

Y
T %
y,:% D @ —X) (e, — X (®

t=j+1
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@ The residual sum of squares of the
AR (k)model recurred;: £=1,2,+.m

k
Sk:SUH(I*d)%) :(1*@21\»)5#1

i=1
So= >, —X)* (9)
r=1

@ The amount of information BIC (&), k=
1,2,++,m of the AR (k) model is calculated as

follows
BIC (k) =nln(S,/n) + klnn (10)
@ P is solved, and then
BIC(P) =1¥i1ﬁﬁ/r},]BIC(k) an

The solved model is named AR (P), and its
parameters are @, s@p s s @pp -

(3)Test judgment

Difference test is conducted on neighboring
models. If the orders are the same and the coeffi-
cients are approximate, then the difference is in-
significant; otherwise, F statistical judgment will
be used

e (12)

s n—r
where A, and A, are the residual sums of squares
corresponding to subsequences in two different
phases (calculation is shown in Eq. (9)), s is the
difference of numbers of subsequence parameters
in two different phases, and r is the number of
high-order model parameters.

The confidence level « is provided in ad-
vance. The F, value, which satisfies F, (P(F>=>
F,)=a), is searched through the F distribution
table. When F>F,_, the subsequences of the two
phases will be significantly different.

We consider one single change point as an ex-
ample. If the subsequences of two neighboring
phases are significantly different, ¢z, is the termi-
nal point of the early-phase subsequence, and the
moments in section [ £, —ny %, +n, ] are taken as
alternate change-point moments. When an alter-
native change-point moment is taken as the
boundary, the total data sequence is divided into
two segments for modeling. The statistical quan-

tity I will then be calculated, and then the place

with the most significant before-after difference
value will be taken as the change-point estima-

tion.

3 Model Application and Discussions
3.1 Data source

The data were provided by a particular tur-
bojet engine test. This experiment was used to
detect electrostatic particles in engine exhaust.
To avoid the destruction of engine structure, the
electrostatic sensor was installed at the outer
bracket of the engine tailpipe. This test bench
was applicable to all life tests for turbojets, and
mainly used for overall performance, applicability
performance, long performance and lifespan, etc.
The test bench consisted of a thrust test bench
system, a fuel oil supply system, and an electric
control system. This experimental engine started
a 200 h lifespan performance test in July 2011,
and a 40 h test was added later, resulting in a to-
tal 240 h test). The interval of the test was 1 h.
Electrostatic monitoring started from the 100th
phase of life test and ended in the 240th phase.
The first hour was removed because collection
line was connected at the ground and it effectively
monitored 139 phases. These data were collected
on November 12, 2011 between 08:00 a. m.
10: 00 a. m., and the searching interval was 1

min. The sampling site was as shown in Fig. 1.

Fig. 1 Schematic of actual sampling site

(1)Background signals
According to Refs. [11-12], there are two

important feature parameters in engine electro-
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static signal analysis, namely, activity level and
event rate, which are calculated as follows:

(D Activity level (AL): The activity level re-
flects the quantity of small particles (such as soot
particles and fraction-lets) that continuously ap-
pear within a period of time T, and it is a meas-
urement of ratio-frequency components of sig-
nals. Activity level is defined as follows

N
AL = [$D0Q (13)

N =1
where N is the number of samples within time T,
and its activity level is the root-mean-square val-
ue.

@ Event rate (ER): The event rate is used
to measure the number of abnormal particles in
airflow within unit time. Typical events include
abnormal large particles generated by component
fault and large soot particles generated by incom-

plete combustion. Event rate is expressed as fol-

lows

ER(t)—AW/’- 100% D

]
where M is the number of events within the time
T, N the total number of samples within time T.
The physical significance represented by the event
rate is within a certain time interval (1 s) of the
electrostatic sensor. The percentage of the num-
ber of points exceeding K times of charge of cur-
rent interval AL value in the total number of
sampled points.

In ignition phase after the experiment starts,
a large quantity of positive and negative ions were
generated inside the pipeline, resulting in a dras-
tic change in the induced voltage on the sensor, as
shown in Fig. 2(a), where A represents the am-
plitude of original data. After approximately 5 s,
the combustion tends to stabilize, and so does the
induced voltage on the sensor.

In Fig. 2(b), when the engine starts in the
ignition phase, large soot particles generated by
incomplete combustion are contained in tail gas,
resulting in a major change in the activity level in

the first 5 s. When the AL charge reaches 30 pc,

Fig. 2 Signal and its feature parameters in startup phase

the signal event rate ER in Fig. 2(c) ascends ac-
cordingly, and the largest proportion reaches
10%. When the engine is under normal operating
status (after 5 s), combustion generates soot par-
ticles with minimal size (nanometer level). These
soot particles are the main components of gar-
path charged particles. Moreover, the combus-
tion process in the combustion chamber of the en-
gine under normal operation is very stable. Thus,
the generated soot particles are relatively stable,
and the corresponding activity level and event rate
tend to be 0. In the analysis chart in this paper,
the activity level parameters are uniformly ex-
pressed by red solid dots " + ", and event rates are
expressed by blue solid square dots “g”.

(3) Abnormal signal

This paper uses typical data monitored from
8:00 to 10:00 AM on November 12, 2011. The
value on each sampled point represents the elec-
trostatic signal of the tail gas that passes through
the sensor in last 1 min. The data after difference
stationary processes are taken as an example to

establish the time sequence AR (P) change-point

model
(@} Q.+ ©2 Q-+ "'SD/;Q/*/) +a,
1<<t<lm
Q=+ . AN (15)
(@] Q.+ ©2 Q-+ "'@/;'szp’ +a,
m<_t<N

where Q is the tail-gas electrostatic induction sig-
nal detected by the sensor, where m is the change

point in the model, coefficients ¢p= (¢ -

b = (gis o

'sgDp)T.

» ¢, )7 represent auto-regression pa-
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rameters, and the residual error a, is the white
noise series. The model significance is shown in
Eq. (6). Fig. 3 shows the original data curves of

the electrostatic signals.

Fig. 3 Original data curves acquired by sensor

3.2 Stabilizations method

After the first-order difference of the original
time sequence data (Fig. 3) {Q,} of sensor in
Fig.1 recorded as {VQ,}, VQ = Q, — Q. 1>
{VQ,} is as shown in Fig. 4.

As shown in Figs. 3, 4, the original sequence
Q, has linear ascending and descending tenden-
cies, and sequence { VQ,} after difference has

been stablizied nearby a fixed value.

Fig. 4 Original data first-order difference

3.3 Change-point searching algorithm flow

The change-point searching algorithm in Sec-
tion 3 can rapidly and accurately detect the time
position at which quantitative change of electro-
static data occurs. The specific searching steps

are as shown in Fig. 5.
3.4 Test results

The test level is set as ¢=0. 05. The parame-
ters are calculated according to Egs. (7—12) and
then used to test the existence of the change
points. The calculation results are shown in Ta-

ble 1.

Data stabilization

—

| AR(p) time sequence change-point model |

¥ Test level o

ether the
difference is
ignificany

| F distribution test of change point |

| Output test result of change point time |

Fig.5 Change-point searching flowchart

Table 1 Change-point searching results

Jumping = Change-point
Start End )

degree 0.05y/n time
8:00 8.01 —0.000 13 n n
8:01 8:02 0.000 668 n n
8:02 8:03 —0. 000 02 n n
8:10 8:11 0.020 189 y 8:11
8:11 8:12 —0.019 99 y 8:11
8:12 8:13 —0. 000 23 n n
8:25 8:26 0.014 452 y 8:26
8:26 8.27 —0.016 99 v 8:26
8.:27 8:28 —0.000 55 n n
8:47 8:48 0.083 381 y 8:48
8:48 8:49 —0.082 21 y 8:48
8:49 8:50 —0. 000 95 n n
9:16 9.17 0.147 074 y 9:17
9.17 9:18 —0. 140 25 y 9:17
9.18 9:19 —0. 000 29 n n
9.:40 9:41 0.099 978 y 9:41
9:42 9:43 —0.001 08 n n

Change-point searching results show that
change points appear five times at 8:11 a. m. ,

826 a. m. » 848 a. m. » 917 a. m. » and 9:41
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a. m. Meanwhile, the engine produces a loud, ab-
normal sound. Detection by test personnel after
disassembly revealed that large-particle carbon
deposits appear in the combustion chamber
(Fig. 6). The real-world scenario verifies that
this paper can perform real-time monitoring of
change status of gas-path charging level of the en-
gine to provide early warning of the initial fault
status. Fig. 7 shows the data and signal features

change-point  time

typical

acquired at a

08:11 a. m.

Fig. 6 Carbon deposit in fuel spray nozzle

80,
>
60F
E Qo |
~ 20 . . : -
OO 2 4 6 8 10
t/s
a) Original data
v 08 5 .() S £ "
3 T
Soap . . . .
0 2 8 10
t/s
(b) Activity level
x 20F . .
; 10 L] ' ' [} ' )
S . . ) )
2 4 6 8 10
t/s

(c) Event rate

Fig. 7 Electrostatic signals and features

at typical change-point time

Comparisons of Figs. 2(b, ¢) and Figs. 7(b,
¢) show that the activity level and event rate after
the engine starts and stabilizes tend to be 0.
However, when the change point occurs, a corre-
sponding activity level AL is maintained at a sta-
ble level 0. 5—0. 8 (nc), and the proportion of
the corresponding event rate reaches 50% , which
is far greater than the stable status under normal
operation of the engine. Actual operation of the

engine shows that normal background noise sig-

nals are at milli-volt levels, but obvious abnormal
pulse amplitude appears within the period of the
216th—217th test run and even volt-level signals

appear.

4 Conclusions

The time sequence change-point model estab-
lished in this paper rapidly and effectively detects
the time when quantitative change occurs.

(1) Within 5 s in the engine ignition phase,
the induced voltage amplitude experiences obvious
change; the corresponding activity level is 30 pc
and event rate is approximately 10%. After it
stabilizes, both the activity level and event rate of
the induced signals return to a value near 0.

(2) The activity level at a typical change-
point time is maintained at 0. 5—0. 8 (nc) and the
event rate reaches 50%, both of which are far
greater than the level under stable working condi-
tions.

(3) Based on the above searching algorithm,
results show that five change-point times, name-
ly, 8:11 a. m., 8:26 a. m., 8:48 a. m., 9:17
a.m., and 9:41 a. m. , are detected, and the cor-
responding jumping degrees are 0. 020 189, 0. 014
452, 0.083 381, 0.147 074, and 0. 099 978. Nor-
mal background noise signals of the engine are at
millivolt level, but volt-level signals appear at
change-point time. This finding indicates that ex-
cess soot particles are present at change-point
time, and these abnormalities change the char-
ging level of the charged particles in the gas path.
The engine disassembly report shows that large-
particle carbon deposits can be found in the com-
bustion chamber, and change-point results of e-
lectrostatic induction signals determine the corre-
sponding fault reflection.

(4) Difference method can concisely and ef-
fectively extract certain information. After the o-
riginal data are processed by the first-order differ-
ential formula, linear trend terms of this data se-
quence are effectively eliminated, thereby facilita-
ting the extraction of information while the sam-
ple sequence is smoothed.

(5) As an advanced early fault detection
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method, the change-point model can reflect the
working conditions of the engine. This model is
beneficial to improving monitoring techniques and

realizing fault prediction and health management.
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