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Abstract: Numerical simulations of unsteady flow problems with moving boundaries commonly require the use of
geometric conservation law (GCL). However, in cases of unidirectional large mesh deformation, the cumulative
error caused by the discrete procedure in GCL can significantly increase, and a direct consequence is that the calcu-
lated cell volume may become negative. To control the cumulative error, a new discrete GCL (D-GCL ) is pro-
posed. Unlike the original D-GCL, the proposed method uses the control volume analytically evaluated according to
the grid motion at the time level n , instead of using the calculated value from the D-GCL itself. Error analysis in-
dicates that the truncation error of the numerical scheme is guaranteed to be the same order as that obtained from
the original D-GCL, while the accumulated error is greatly reduced. For validation, two challenging large deforma-
tion cases including a rotating circular cylinder case and a descending GAW-(1) two-element airfoil case are selected
to be investigated. Good agreements are found between the calculated results and some other literature data, dem-
onstrating the feasibility of the proposed D-GCL for unidirectional motions with large displacements.
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0 Introduction

Flows around moving boundaries can be en-
countered in many practical situations, such as
aeroelastic problems of aircrafts, stage separation
of rockets, separation of projectile and the takeoff
and landing of aircrafts, and so on. Generally,
there are mainly four kinds of computational fluid
dynamic (CFD) methods for moving boundary
problems: (1) Grid velocity method', which is
to simulate unsteady flows via grid movement;
(2) overset grid method™, where valid Chimera
holes need to be cut in each grid in regions that
overlap with solid bodies or any other non-flow
regions which belong to the other grids of the o-
verset grid system; (3) moving grid method™,
which uses arbitrary Lagrangian-Eulerian (ALE)
scheme to solve unsteady Euler/Navier-Stokes

(N-S) equations; (4) the immersed boundary
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method™ , which is becoming a popular approach
due to its simplicity and easy implementation.

To avoid the error induced by grid motion,
the geometric conservation law (GCL) proposed
by Thomas and Lombard™’, should be taken into
consideration. It poses some restrictions on the
update procedure for the positions of grid points
and grid velocities. Lesoinne and Farhat ' stated
that the change in area (volume) of each control

volume between ¢" and ¢!

must be equal to the ar-
ea (volume) swept by the cell boundaries during
At =¢""—1¢", and they found that spurious and
potentially unstable oscillations may occur if GCL
was violated. Later, Koobus and Farhat"™ formu-
lated the consequence of GCL on the second-order
implicit temporal discretization of the semi-dis-

crete equations, and used it as a guideline to con-

struct a new family of second-order time-accurate
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and geometrically conservative implicit numerical
schemes for flow computations on moving grids.
They also stated that it had been shown that vio-
lating GCL in aeroelastic computations could in-
troduce a parasitic weak instability in the lift re-
sponse. Therefore, GCL should be satisfied with-
out much increase of computational complexity.
From another point of view, Guillard and Far-
hat™® proved that satisfying an appropriate D-
GCL is a sufficient condition for a numerical
scheme to guarantee at least first-order time accu-
racy on moving grids. Further, Farhat et al.[®’
pointed out that for sample ALE schemes, satis-
fying the corresponding D-GCL is a necessary and
sufficient condition for a numerical scheme to pre-
serve the nonlinear stability of its fixed grid coun-
terpart, and the impact of this theoretical result
was numerically studied through some practical
applications.

In general, GCL can be solved explicitly at
each control volume face for the boundary veloci-

tiesH,

where geometric calculation would be
complex and thus more computational efforts are
needed. In practice, a more simple and efficient
way is to directly evaluate the volume fluxes
through all control volume faces, by which com-
plex geometric calculation can be avoided. How-
ever, the accumulated error may be produced
when using this method and sometimes they could
not be ignored, e. g. , in the cases of unidirection-
al large mesh deformation. Moreover, due to the
error, the non-physical negative cell volume may
be encountered, causing the program blowing up,
yet there is little research about this issue.
Hence, a new D-GCL is proposed in this paper
which uses the control volume analytically evalua-
ted from the grid motion at the time level n , in-
stead of using the calculated value from the D-
GCL itself. By analyzing the truncation error, it
is theoretically proven that the accumulated error
could be effectively reduced, while without loss of
the accuracy of numerical schemes. The capabili-

ty of the proposed method is numerically demon-

strated by adopting a rotating circular cylinder
case and a descending GAW-(1) two-element air-

foil case.

1 GCL and Original Discrete Proce-

dure

GCL originates from the basic requirement
that any ALE schemes should be able to exactly
predict the trivial solution of a uniform flow. The
ALE equation of mass conservation is usually
taken as the starting point to derive the geometric
conservation law. For an arbitrary control volume
0 bounded by a closed surface S, the integral
form of the law of mass conservation can be writ-

ten as followsH"
9 R—
atideJrjip(V—v,)°nd.\O (D

where p is the fluid density, V the fluid velocity, v,
the velocity of the boundary of the control volume
Q ., and n = (n,,n,,n.) is the unit normal vector
pointing outwards of the surface element ds, as

shown in Fig. 1.

Anﬂ n

Fig. 1 Discretization of the original GCL

With the assumption of a uniform flow hav-
ing a constant density p and a constant velocity V ,
Eq. (1) turns to in the integral form of the geo-
metric conservation law

dt

0

ijdn—ﬁ%, v nds =0 2)
90

Eq. (2) can be temporally discretized by
using the same numerical method as used to solve
the physical conservation laws. In the case of a
first-order time discretization, the corresponding

discrete GCL is written ast'
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Qi — o

N[
v D (v« nds),, =0 (3

m=1

where N, represents the number of control vol-
ume faces and the superscripts n and (n+1) de-
note the current and the next time levels, respec-
tively. From Eq. (3), we have

N
\./

Qi =05+ A (v onds),, “

m=1

Note that Eq. (4) is an explicit scheme for obtai-
ning 7", considering that v, and n can be analyti-
cally evaluated in advance according to the grid

motion.

2 New D-GCL and Truncation Error
Analysis
2.1 Cumulative error

Theoretically, the volume flux in Eq. (3)
equals to zero for such moving control volumes,
where the shapes of the grid cells do not change in
time. However, the numerical error is inevitably
introduced by a spatial discretization method,
i.e.

Ny
e= >, (v »nds), (5)

m=1

For a reciprocating motion, e. g. the pitching
motion of an airfoil, the error can be counteracted
by itself. But for a unidirectional motion with
large displacements, such as the rotation of a
wind turbine and the landing and take-off of an
aircraft, the error will be gradually accumulated
when Eq. (3) is marched over time. In this case,
the continuous accumulation of a negative ¢ will
probably lead to a negative volume. In other
words, the phenomenon of D-GCL's cumulative
error is found out just according to a negative vol-
ume.

One typical example is a rotating circular cyl-
inder as sketched in Fig. 2. Fig. 3 shows the cor-
responding computational domain, which is divid-
ed into two zones: Zone 1 rotates rigidly with the
circular cylinder, and Zone 2 remains stationary.
O-type grids are applied to both zones and the
grid nodes are equally distributed on the interface

of the two zones. For achieving a point matched

x\e
T
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=

Fig. 2 Schematic of a rotating circular cylinder
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Fig. 3 Grid zones for the rotating circular cylinder case

sliding mesh, as indicated in Fig. 4, the physical
time step is carefully chosen so that the inner zone
rotates across one grid cell per time step. In

Fig.5, the cell volume shows an unphysical in-

(b) Next time step

Fig. 4 Schematic of point matched sliding mesh
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Fig.5 Calculated volumes of cell (1,1) by using the
original D-GCL and the proposed D-GCL

crease over time when the original D-GCL is
used, which is exactly caused by the cumulative

error in a unidirectional rotation case.
2.2 New D-GCL and error analysis

To avoid the cumulative error here, the con-
trol volume at the time level n is analytically eval-
uated according to the grid motion, instead of u-
sing the calculated value from the D-GCL itsellf.
In addition, the normal vector is computed at the
midpoint configuration between two neighboring
time levels, by which the numerical error of the
volume flux computation can be effectively re-
duced. As a result, a new D-GCL is presented

Q=

Ny
LT e =0 (6)

m=1

where 27, is the cell volume that evaluated in

terms of the coordinates of the grid nodes and

n"'% the normal vector calculated using the mid-
point configuration. Obviously, the proposed D-
GCL is free from the accumulated error since Qj,
does not contain any accumulated error of time
level n , and the calculated cell volume is almost
constant as shown in Fig. 5, according with the
real situation.

Here we turn to the analysis of truncation er-
ror of numerical schemes with the new D-GCL.
Extending Eq. (1) additionally to the laws of mo-
mentum and energy conservation by using a first-
order time-accurate scheme, we can have

N S

Qe ="+ ) (Flo(g, ) —

m =1

Vz(gm’g) . p(gm,@))m . Sm(gm 96) =0 (7)

where ¢ is the time step, F the flux function eval-
uated by a traditional central difference scheme,
g, the gravity center of the facem,S,,=n, AS,, the
face vector, and @ =t for explicit schemes and § =
t + ¢ for implicit ones. The corresponding local
truncation error of control volume ; can be writ-

ten as
o= BIFGGs.0) = vt psin]
a0

Ny
n(s,0)dsdt 47> (Fo(g, »0) —v,(g, 0 »

m=1

p(g,,,ae)),n 'S,n(gm 90)+T><O(/lq) (8)

where s is the position vector, h the space step.

and O(h?) the spatial error of flux function'™.

Without loss of generality, the starting point
of the integral is taken as =0, thus Eq. (7) turns

to

e = = | PLFGs) =G0« ot ]
0
20
N,

n(s.)dsdt + 7> (F(p() — v,(0) + p(0),, *
m=1
S, (0) + X Oh") =

N,

— D2 A=B) > (FQ®) —v, () + p(@),, +

me N m=1

S, (@) + X Ot 9
where A = ['[ FGptsa) + nGndsde s =
0J m(t)

jrj v.(s,t) « p(s,0) » n(s,t)dsdr.
m(t)

0

Expanding F(p(s,t)) around g, as follows

F(p(s,00) =F(o(g, 1)) + %

T o(gn 1) (s —g,) + OCh?) (10)

and therefore
J Flp(s,t)) « n(s,t)ds =
m(1)

IF
o

V(g0 (s — g,) + O™ ) « n(s,t)ds =

| (Feotgar+

& m

AS, (1) (F(p(g, ) + n, () +0OCh*)) (11)
Substituting Eq. (10) into the expression of

A, we have

A= [ 88, (FGog D) = 1, (0 +OG)) di =

| 88,0 Fptg 00 + (DA OaS, 1)

az
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Further, F(p(g,,t)) is similarly expanded
around 0
F(p(gm 7t)) —

Flotg, .00 + B gy 0

(13)
With Eq. (12), Eq. (11) can be written as

A— JTAS,”(t) .
0

<F(p(g,,1,6))+w 0(ti5)+0(fz)> .

n,, ()dt + O(zAS,,h?) =

F(p(gm,e»f AS, (1)« m, (de + E¢ (i 1))
0 [e

0
| 28,0 « m. = pdt+OaS, e + )

(14)
Leta, (1) =AS,,(t) +n, (1) (t —0) and expan-

z

ding a, around —,a, can be written as

Do

day

w=a(5)

2

(r=F) o

15

and therefore

J‘;AS(z‘) (D — ) di =
[l (5)+ %

fas(g) . n, (l) (% — 6) +0&)  (16)

;(z—§)+o<rz>)dz:

2

Similarly, let a, (g,) = IF(p(g, ,1))

ot and

0

expanding a, around the gravity center of control
volume g,,a, can be written as
a; (gn) =a,(gg) + Va, ‘ gy (&m — g0)+Om")
an

)

i (G0 — ) HOUD) ) +

Omitting the higher-order terms, we have

Sara =3 (ea8(5) - n(5) (£ -

me N me an

(dz (go)+ Va,

o +7°h) (18)
: T, Ty —
With the fact that ,,;ﬂAS”’ ( : ) n, (5 =0. one
can derive that 2(11(12 is of order O(z* + *h) .
me N

Hence,

DTA = DTF(olg, .0 -J;AS(t) e n, (Ddt+

me N me I

Dlaias +0AS,h?) =

me aN

STF g ) + | 48,0« m, (e +0(3)

me an
(19
where O(3) denotes t*h? such thate +p = 3.,

Similarly,one can deduce that

EB - Ep(gm ’(9) *

mean medn

JJ v (s.8) » m, (s, 0)deds + 03 (20)
m(t)

0
and the truncation errore; can be expressed as fol-
lows

(= D pCa 0 - |

me N

T

J p(s,0) » m, (ss0)deds —
m(t)

0

STF g0+ | S « mu i+
0

me N
N

Ny
e SV F (g s0) — 1,(g a0 + 0(g0 ), *

m=1
AS, (g, .0 + 0@ X (OMh)+003))) 2D
Since p(g, +0) is a constant and uniform val-

ue, Eq. (20) is finally reduced to
N

Ny
& =p(g. 0+ (@7 =2 — D) (g, ), -

m=1

8, (.0 ) + O X (O +0(3))) (22)

Eq. (22) indicates that with the developed
D-GCL, the truncation error of the given scheme
can be guaranteed to be at least first-order time-
accurate. Therefore, it is theoretically proven
from the above that the accuracy of numerical
scheme can be maintained while the accumulated

error is reduced.

3 Results and Discussions

To validate the proposed D-GCL, the un-
steady flows around a rotating circular cylinder
and the descending GAW-(1) two-element airfoil
are investigated.

The unsteady 2-D N-S equations on struc-
tured moving grids are solved by a finite volume
method and a dual time-stepping scheme. Non-re-
flecting boundary condition is used in the far
field, and the no slip boundary condition is en-
forced at solid walls. Calculation of the rotating

circular cylinder uses the laminar flow model.
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The Spalart-Allmaras one-equation turbulence
model is employed for the simulation of turbulent
flows around the GAW-(1) two-element airfoil,
since it is suitable for the simulation of flow

around a multi-element airfoilt**’.
3.1 Rotating circular cylinder

There are two parameters governing the de-
velopment of the flow around a rotating circular
cylinder. One is the Reynolds number, defined by
Re :pDU/Iu , where D is the diameter of the cyl-
inder, U the fluid velocity, and x the kinematic
viscosity. The other is the ratio of rotation speed
to rectilinear speeds, defined by a =wR /U, where
w is the angular speed and R the radius of the cyl-
inder. In this case, Re is taken as 200 and « as
0.5. The multi-block structured grid is used to
discretize the computational domain as described
in Section 2. 1 and a simple dynamic mesh method
is adopted. For comparison, the original D-GCL
and the proposed method are employed, respec-
tively.

Fig. 6 shows the time histories of the lift co-
efficient. The result calculated by the proposed
D-GCL is in excellent agreement with that in Ref.
[13], where an explicit finite-difference/pseudo-
spectral technique and a new implementation of
the Biot-Savart law were used to integrate a veloc-
ity/vorticity formulation of the Navier-Stokes
equations. On the contrary, the result calculated
by the original D-GCL significantly deviates from
the other two, which is directly caused by the cu-
mulative error. Therefore, the cumulative error

is eliminated and a reasonable result is obtained

2 —— Method of giving the cylinder
rotary speed directly
1 —— The proposed D-GCL

r The original D-GCL

of * Ref[12]

0 10 20 30 40 50
t

Fig. 6 Comparison of calculated time histories of lift co-

efficient with reference data

by using the proposed D-GCL.
3.2 Descending GAW-(1) two-element airfoil

The computation is performed at a free-
stream Mach number of 0. 2, a Reynolds number
of 2.2X10%and an attack angle of 3. 0°. The phys-
ical time-step is 1. 0 X 10 *s and the number of
the sub-iterations in pseudo time is set as 400.
The initial height above ground is 50c. The
GAW-(1) two-element airfoil descends at the
speed of w, =3.563 7 m/s, and the airfoil’s at-
tack angle is 4. 8°.

For this descending airfoil, the strategy of
moving grids with local mesh reconstruction as
presented in Ref. [14] is adopted. Figs. 7,8 illus-
trate the C-H-O-type multi-block grid topology
and the local mesh around the airfoil, respective-
ly. The number of grid cells is about 9. 3 mil-
lions. To improve the dynamic mesh quality,
during the descending process, Zones from 5 to 9
move with the airfoil in a purely translational mo-
tion, while Zones from 1 to 4 are deformed by a
hybrid RBFs-TFI dynamic

When the grids become too skewed somewhere,

mesh method"™,

the local mesh reconstruction is then used.

Fig. 8 Computational structured grids of GAW-(1) two-

element airfoil
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As listed in Table 1, a negative volume is
firstly observed at cell (36,18) in Zone 2 when
any of the original D-GCL, the sophisticated
third-order compound Simpson formula in Ref.
[16] and the Runge-Kutta method in Ref. [17] is
used. However, as demonstrated in Fig. 9, the
instantaneous dynamic mesh around cell (36,18)
is physically very normal, so the calculated nega-
tive volume is actually caused by the cumulative
error of D-GCL in this large deformation case. In-
stead, the proposed D-GCL has avoided the nu-
merical problem and predicts a positive and rea-

sonable cell volume.

Table 1 Comparison of calculated cell volumes of Cell (36,

18) at t=13.8 s

Method

Calculated volume

—1.216 809 5 X 107°

—1.225 843 2 X 107°

—1.160 014 9 X 10°°
2.672 665 6 X 107°

Runge-Kutta method
The original D-GCL
Compound Simpson formula

The proposed D-GCL

—49.921

49,94 BLLIT 36.1.17

—-49.96

N -49.98

=50.00

-50.02

-50.04

226 228 2.30 2.32 234 2.36 238 2.40
X

Fig. 9 Schematic of the physical grid cell of cell (36,
18) in Zone 2

Further, the computed time history of lift
coefficient and pressure contour is shown in
Figs. 10,11, respectively. It is seen that with the
proposed D-GCL., the non-physical phenomenon
of negative volume does not appear. As the airfoil
approaches the ground, the unsteady ground
effect has also been investigated. The computa-
tion indicates that the lift of the airfoil decreases
as it gets close to the ground. Besides, the result
is compared with that from the quasi-steady com-
putation, which adds the equivalent attack angle

to airfoil’s attack angle. It is found that with the

407
» Steady

——The proposed D-GCL
35¢

~ 30

25}

20fF

2 4 6 8§ 10 12 14
t/s

Fig. 10 Comparison of calculated time histories of lift

coefficient
445
-45.0}
—45.5¢
N -46.0|
-46.51

-47.0}

475}
-48.0

05 1.0 15 20 25
X

-1.0 =05 0

Fig. 11 Pressure contour at r1=13 s
height decreasing, the unsteady ground effect
makes the lift first greater than the quasi-steady

value and later becomes less after about 13 s.

4 Conclusions

To eliminate the cumulative error caused by
the discrete procedure in the original D-GCL, a
new D-GCL is proposed. Error analysis indicates
that it can guarantee the truncation error of the
numerical scheme at least first-order time-accu-
rate while the accumulated error is reduced. The
capability of the method is demonstrated by in-
vestigating a rotating circular cylinder case and a
descending GAW-(1) two-element airfoil case.
The good agreements between the numerical re-
sults and the literature data show that the pro-
posed D-GCL can be well applied to unidirectional
motions with large displacements. More impor-
tantly, the cumulative error is minimized or elim-
inated and the numerical difficulty of negative cell

volume is overcome.



No. 1 Zhu Yixi, et al. A New D-GCL for Unidirectional Motion with Large Displacement 161

Acknowledgement

This work supported by the National Basic Research
Program of China ("973” Project) (No. 2014CB046200).

References:

[1] PARAMESWARAN V, BAEDER J D. Indicial aero-
dynamics in compressible flow-direct computational
fluid dynamics calculations[ J]. Journal of Aircraft,
1997, 34(1):131-133.

[2] NAKAHASHI K, TOGASHI F, SHAROV D. In-
tergrid-boundary definition method for overset un-
structured grid approach[J]. AIAA Journal, 2000,
38(11) . 2077-2084.

[3] JAHANGIRIAN A, HADIDOOLABI M. Unstruc-
tured moving grids for implicit calculation of unstead-
y compressible viscous flows[ J]. Int J] Numer Meth
Fluids, 2005, 47, 1107-1113.

[4] PESKIN C S. Flow patterns around heart valves: A
numerical method [ J]. Journal Computer Physics,
1972, 2. 2252-2271.

[5] THOMASPD, LOMBARD C K. Geometric conser-
vation law and its applications to flow computations
on moving grids[J]. AIAA Journal, 1979, 17 1030-
1037.

[6] LESOINNE M,FARHAT C. Geometric conservation
laws for flow problems with moving boundaries and
deformable meshes, and their impact on aeroelastic
computations[ J ]. Comput Methods Appl Mech En-
grg, 1996, 134. 71-90.

[7] KOOBUS B, FARHAT C. Second-order time-accu-
rate and geometrically conservative implicit schemes
for flow computations on unstructured dynamic me-
shes[J]. Comput Methods Appl Mech Engrg, 1999,
170, 103-129.

[8] GUILLARD H. FARHAT C. On the significance of
the geometric conservation law for flow computations
on moving meshes[J]. Comput Methods Appl Mech
Engrg, 2000, 190. 1467-1482.

[9] FARHAT C, GEUZAINE P, Grandmon C. The dis-
crete geometric conservation law and the nonlinear
stability of ALE schemes for the solution of flow
problems on moving grids[J]. Journal of Computa-
tional Physics, 2001, 174. 669-694.

[10] DEMIRDZIC 1. Finite volume method for prediction
of fluid flow in arbitrarily shaped domains with mov-
ing boundaries[ J]. International Journal for Numeri-

cal Methods in Fluids, 1990, 10; 771-790.

[11] DONEA J, HUERTA A, PONTHOT J P, et al.
Arbitrary Lagrangian-Eulerian methods| M ]/ Ency-
clopedia of Computational Mechanics. [ S. 1. ]: John
Wiley & Sons, Ltd,2004.

[12] RUMSEY C L, YING S X. Prediction of high lift;
Review of present CFD capability [ J]. Progress in
Aerospace Sciences, 2002(38): 145-180.

[13] CHEN Y M, OU Y R, PEARLSTEIN A J. Devel-
opment of the wake behind a circular cylinder impul-
sively started into rotatory and rectilinear motion[ ] ].
Fluid Mech, 1993, 253 449-484.

[14] ZHU Yixi, LU Zhiliang, GUO Tongqing. Numerical
simulation of multi-element airfoil in unsteady ground
effect[J]. Acta Aerodynamic Sinica, 2015, 33(6):
806-811. (in Chinese)

[15] DING Li, LU Zhiliang, GUO Tongqing. An efficient
dynamic mesh generation method for complex multi-
block structured grid[J]. Advances in Applied Math-
ematics and Mechanics, 2014, 6(1): 120-134.

[16] GERALD CF, WHEAT LEY P O. Applied numeri-
cal analysis[ M |. Reading Mass: Addison Wesley,
1984.

[17] GUO Zheng. Numerical simulation technique re-
search for unsteady multi-body flowfield involving
moving boundaries[ D]. Changsha: National Univer-

sity of Defense Technology, 2002. (in Chinese)

Ms. Zhu Yixi received B. Sc. degree in Flight Vehicle De-
sign and Engineering from Nanjing University of Aeronau-
tics and Astronautics(NUAA) in 2007. She began to study
for a doctor’s degree in Nanjing University of Aeronautics
and Astronautics in September 2011. Her research is fo-
cused on computational fluid dynamics and relevant fields.

Prof. Lu Zhiliang received the B. Sc. and Ph. D. degrees in
aerodynamics from Nanjing University of Aeronautics and
Astronautics(NUAA) in 1984 and 1997, respectively. In
1995, he joined the Deutsches Zentrum fiir Luft-und
Raumfahrt for cooperative research. He was engaged as a
professor of aerodynamics of NUAA in April 2001. His re-
search is focused on computational fluid dynamics, aero-
elasticity and relevant fields.

Dr. Guo Tongqing received the Ph. D. degree in aerody-
namics from Nanjing University of Aeronautics and Astro-
nautics(NUAA) in 2006. In 2016, he worked as a visiting
scholar in the National University of Singapore. His re-
search is focused on computational fluid dynamics and

CFD/ CSD coupling numerical computation,

(Production Editor: Xu Chengting )



