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Abstract: A decision-making problem of missile-target assignment with a novel particle swarm optimization algo-
rithm is proposed when it comes to a multiple target collaborative combat situation. The threat function is estab-
lished to describe air combat situation. Optimization function is used to find an optimal missile-target assignment.
An improved particle swarm optimization algorithm is utilized to figure out the optimization function with less pa-
rameters, which is based on the adaptive random learning approach. According to the coordinated attack tactics,
there are some adjustments to the assignment. Simulation example results show that it is an effective algorithm to
handle with the decision-making problem of the missile-target assignment (MTA) in air combat.
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0 Introduction

Modern fighters have the ability to attack
multiple targets and carry long range air-to-air
missiles. Beyond visual range (BVR) air combat
has been the mainstream with the development of
modern fighters, where fighters are required to
exchange information and attack multiple targets
cooperatively''?/, To complete cooperative multi-
ple target attack (CMTA),
(DM) is necessary for fighters to allot targets and

missiles according to the shared information™™"!.

decision-making

Thus, the missile-target assignment ( MTA)
problem is the main part of DM when it comes to
CMTA.

There are many algorithms applied to DM
problem in CMTA, such as particle swarm opti-
mization (PSO), genetic algorithm (GA) and ant

571 A heuristic algo-

colony optimization (ACO)L
rithm is introduced to adaptive genetic algorithm
in Ref. [8] and improves local search capability.

Adaptive pseudo-parallel genetic algorithm is also

» Corresponding author, E-mail address: ylgnuaa@163. com.

considered to deal with air combat DM problem

beyond visual ranget®’.

However, GA is not a re-
al-time algorithm and may not work sometimes.
Some intelligent algorithms are also used to solve
DM problems™™'?, In Ref. [13], fuzzy neural
network is applied to assign missiles according to
the threat of enemy fighters and the bomb load of
our fighters. However, it is hard to obtain practi-
cal and complex air situation data for neural net-
work training. Considering the uncertain infor-
mation in the MTA problem, grey system theory
is introduced in DM problem",

In this paper, an improved particle swarm
optimizer (IPSO) is deduced to handle with the
DM problem for CMTA in the air combat. The
IPSO algorithm has stronger global searching ca-
pability by designing a new velocity learning

Sstrategy.

1 DM Problem in CMTA

1.1 Air combat situation

Air combat decision-making is based on the
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air combat situation. To establish the model of
air combat situation, it is assumed that there are
M our fighters which are marked in blue and N
enemy fighters which are marked in red. Denote
our fighter set B={B;,i=1,2,++,M} and enemy
fighter set R={R;,; =1,2,3,-*, N}. In an air
combat, the situation between our fighters and
enemy fighters can be illustrated in Fig. 1, where
LOS is the line of sight and D; the distance be-
tween B, and R;. xp and Vy; are the position and
velocity of B; . respectively. ¢; is the bore of sight
(BOS) angle of R; to B;. xy, and Vi, are the posi-
tion and velocity of R;, respectively. ¢; is the BOS
angle of B, to R;.

Fig.1 The situation between B; and R;

Distance, BOS angle and velocity are taken
into consideration as threat factors when con-
structing the threat function™®. The threat func-
tion is described as a composite of all its threat
factors, namely

th; =w thDithS + w,th )b (D
where thli is the distance threat factor, th% the
BOS angle threat factor, thn the velocity threat
factor, and w, »w, are non-negative weight coeffi-
cients and satisfy

w T w =1 (2)

Moreover, the value range of all the threat
factor functions is [0,1]. Thus, there is th; €
[0,1].

The distance threat factor can be constructed

as
1 D; < R
D; — R
D, __ _ i “vaB . p )
thij" - 1 T,»B 7RUB Rub < D’j < T’B (3)
0 D; >Ty

where R,; is the maximum effective striking dis-
tance of missiles carried by our fighters and T,
the maximum radar tracking distance of our fight-

ers. In other words, the distance threat function

R

T

is proportional to and inversely proportional

9

to However, if our fighter cannot track the

B
enemy fighter, the distance threat is 0 and if ene-
my fighter is within the striking range, the dis-
tance threat is 1.

The BOS angle threat factor can be construc-
ted as

the =eh (re;; /18072 D

where A, .1, are the positive constants. Better at-
tack angle results in better attack effect.

The velocity threat function can be construc-

ted as
1 VRJ < 0.5Vy
, Vi
this =<1.5— V—’ 0.5V, < VRj < 1.4Vy (%)
B
0.1 VRJ > 1.4V

1.2 MTA model

Multi-fighter cooperative attack problem is
aimed at optimizing target assignment for missiles
carried by our fighters. According to the threat
function known, multiple target assignment de-
velops a proposal where there are more attack
success and less fighter casualties.

Assume that our fighter B; carries L; missiles
to attack enemy fighter targets. Thus, there are

M
7= Z L, missiles our fighter carried. The missile

i=1

number Z satisfies
N<Z<2N (6)
Denote our Z missiles set G={(G, ,r=1,2,++,
Z}. The rth missile in set B corresponds to the
hth missile of the B;th blue fighter. The B;th
blue fighter carries L; missiles. The rth missile

can be defined as
i—1
r= > L, +hh =1.2,.Lisi=1.,2,. M)
f=1

Missiles in set B consist of Boolean function,
X,; states whether the rth missile attacks the jth
enemy fighter.
1 the rth missile attacks R;
v 710 the rth missile doesn't attack R, ®
th,; is the threat value of the missile r carried by

our fighter B, to the enemy fighter R;. Thus, the
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survival probability of R; after attacked is 1 —h

e

In other words, the expected remaining threat of

z
R; to our fighter B, is th; « H A—rth;)X,.
r=1

What we want is to find an optimal missile
assignment proposal 7 to make remaining threat
function minimum. The optimization function is

described as

N M Z

E(x) =arg rﬂnei(?/z; Z (- [1la=mpx, ]}

r=1

D)
1.3 Analysis on coordinated attack tactics

When our fighters attack enemy fighter tar-
gets, assignment rules need to be determined for
our fighters. The assignment rules work so that
our fighters get more benefit when attacking.

It is supposed that each missile of our fight-
ers can attack only one enemy fighter target. One
enemy fighter is attacked by two missiles at

most. It is essential to declare constraints on X,

(10)

According to priority attack principle, opti-

mization function is shown as

M
ASMGiLj) =thy; X D th; (11)
i=1

M
where Zthj,- is the sum of threat of R; to B, and

i=1

th; is the threat of B, to R;. It also can be seen as
the assigned value of B; to R;. The larger the as-
signed value is, the more chance R; would have to

M
be attacked by B;. If Ezhj, is of large value, it is

i=1

essential to assign two missiles to attack the tar-
get. The larger assigned value ASM(i,;) means
better attack effect.

Denote missile pair in the situation where
two different missiles Z, and Z, attack the same
target R;(r,[,j). The assigned value difference of
(r,l,j) is defined as

DIF(r,l,j)= | ASM(r,j) — ASM(/,j) | (12)

There is optimal attack effect when one of the as-

signed value is much larger than the other.
Then, the MTA problem is to find a solution
7 to minimize the equation above and accord with

coordinated attack tactics.

2 Improved Particle Swarm Optimi-

zation

In the PSO algorithm, each particle is trea-
ted as a potential solution in D-dimensional
space. The position of the ith particle is represen-
ted by a D-dimensional vector X; = (&, »x5 s
xp)» and the velocity of the ith particle can also
be represented by a D-dimensional vector V, =
(Vi1 s Uiz »*** s Uip ).

In the PSO algorithm, the updating formulae

of the velocity and the position of each particle are

given by
v =k ey o randt o (pt — %) ¢, ¢ rand) .
(Pﬁd — )
ay !t =xk 4ot (13

where k is a pseudo-time increment and represents
iterations; P, = (py s pu s+ pip) 1s the local opti-
mal position of the ith particle; P, =(p,1 P
p.n) represents the global optimal position in the
swarm, here g is the index of the best particle a-
mong all the particles in the population; ¢, and ¢,
are called the cognitive and the social coefficients,
respectively; rand; and rand, are two random
numbers in range [0,1].

Based on the PSO algorithm above, an im-
proved PSO (IPSO) is presented, in which a new
learning strategy is introduced in the particle ve-

locity update equation, described as
1 [(17% . randt kHHL) .
Uja X rand; Vid
n n

rand; « (pr—a%) ] (14)
where rand, and rand, are the random numbers in
range [0,17]. x 18 the constriction coefficient; P, =
[p“ Yoo

formance which is selected randomly; ; the ar-

, pyo ] the particle position with better per-

rangement number according to the performance,
here the smaller j corresponds to the better per-
formance of the jth particle; n the whole number

of the particles in the population.
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The constriction coefficient y is introduced to

ensure the PSO algorithm to converge. (1 — %)

dynamically adjusts the particle velocity for focu-
sing the PSO into a local search. (1 + %) makes

the particle position tend to a particle position
with better performance.

IPSO algorithm with fewer parameters not
only keeps the diversity of the velocities but also
does not alleviate the certainty of directing to the
destination. The particles with better perform-
ance will increase their inertia movements, which
expands the searching space and improves the
searching speed. The particles with worse per-
formance will increase their learning steps, which
reduces the differences among the population and
improves the whole performance of the popula-
tion.

Thus, the IPSO algorithm flow can be de-
scribed in Fig. 2.

Initialize the parameters Maxi-
mum iteration number, popula-
tion size and constriction factor

!

Initialize the velocities and the
positions of the population

!

Calculate the fitness of each
particle in the population

Sort.the %opultgtion Update the velo-
in order o . ve!
decreasing fitness [ | city and position
values of each particle

Fig. 2 IPSO algorithm flow

3 Realization of IPSO for Multi-tar-
get Collaborative Combat Deci-
sion-Making

Every possible optimal solution is seen as a
particle in PSO. The adaptive value of particle
needs to be calculated in every position. It is rea-
sonable for the adaptive value to be defined as ob-
jective optimization function to get the updating

velocity and direction for every particle. Based on

the MTA model established above, a set of mis-
sile-target assignment is dealt with as partial
swarm after updating. m optimal MTA proposals
correspond to m particles in the particle swarm.
Every particle is in the searching space of Z di-
mension. The position vector of the kth particle
in the current iteration is defined as

= (ca C2 st Ciz) (15)
where £ =1,2,++,m,Z the sum of missiles, and
¢, the position of the kth particle in the rth di-
N red] and N_red is

the sum of enemy fighter target.

mension. ¢, belongs to [1

The velocity of the kth particle is given by
Ve="{(vu Ve ** Uy = vy) (16)
where v, satisfiesv, € [—-1+N N —1].

If the kth particle has the best fitness in the
current iteration, it is defined as the local optimal
solution and noted as

P,=pun P = DPu o Pwz) D)

If all of the particle have the best fitness in
the current iteration, it is defined as the global
optimal solution and noted as

P,=(p,y pPp 0 Do o Pz) (18

The updating formulae of the velocity and

the position of each particle based on IPSO are

given by

Uy (t+1)zx[<1—57) » randl, * v, (¢)+

<1+7]1—.> e rand2, * (i)m(l‘)*lm(t))}

o (tt+1D)=v, &+ 1)+ ¢, () (19)

The position ¢, (t+ 1) may not be an integer
vector because of the constriction coefficient and
the random number in the updating formulae.

Thus, there is a modification of position proposed

as
J N cw @+1) >N
o (t+ 1) =+ 1 o 0+ 1) <1
hck, t+1 | Others
20)

If the position value ¢, (t + 1) is bigger than
the target number, it is restricted in the last tar-
get. If the position value ¢, (¢t + 1) is less than 1,
it is restricted in the first target. Otherwise, all

the position values are rounded down to make
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sure the whole positions are integer within the
range.

It is essential to restrict velocity vector in a
certain range to make sure that position vector is

not updated too fast

( Ummaxor Vi (L 1) = Vi,
Uy T 1) =9 —Vnar U @+ 1) < Upaxr
17),:,, t+ 1D others
Vmax = N — 1 21)

According to the coordinated attack tactics a-
bove, more constraint conditions are taken into
consideration. Each missile can only attack one
enemy fighter target. Each target is attacked
twice at most. The Boolean value of the missile is

constrained as

SX, —1

i=1

r=1,2,,7
B (22)
DX, <2 j=1.2.=.N

r=1

This series of constraints are used to check
the solution of MTA problem and make some ad-
justments if necessary. The steps are as follows:

Step 1

values need to be changed. If the same position

Denote a set A which includes all the

value exists in the position vector z;, more than
twice, two of them are chosen randomly and oth-
ers are saved in set A.

Step 2

cludes targets in set [1

Denote two sets S, and S,.S, in-
N_red] which have not
appeared in the solution before. S; includes tar-
gets in set [1 N_red] that have appeared in the
solution only once.

Step 3 Make some adjustments to set A.
Assume that the value of the position ¢, needs to
be changed and the updated position value is ¢,. ¢,
should belongs to (S, S;}. The principle of
choosing targets is given by

Ck,») } (23)

¢y ) 1s the distance between ¢, and

¢, =arg min{d (c,

where d (c,
¢,. Then, the element ¢, is removed from set A.
Step 4

there is¢, € S,;, ¢, would be saved in S, and re-

Update the two sets S, and S;. If

moved from S,. If there is¢, € S,, the elements

in S, and S, would not be changed.

Step 5

comes a null set.

Repeat Steps 3, 4 until set A be-

4  Simulation Experiment of IPSO
for CMTA

Assume that our fighters B and enemy fight-
ers R are in a BVR air combat. Our fighters B a-
dopt CMTA strategy. In this simulation, there
are four our fighters and each fighter has four
missiles. Thus, the number of the missiles to at-
tack the enemy fighter targets is 16. The velocity
of our fighters is 300 m/s. The effective striking
distance of missiles carried by our fighters is
70 km. The maximum tracking range of our fight-
ers is 120 km. There are fourteen enemy fighter
targets. The velocity of enemy fighters is 300
m/s. The effective striking distance of missiles
carried by our fighters is the same as that carried
by the enemy fighters. The maximum tracking
range of our fighters is the same as that of the en-
emy fighters. In a random scenario, our fighters
and enemy fighters aviate face to face. The air

combat situation is shown in Fig. 3.

Fig.3 The air combat situation

Then, the IPSO algorithm designed above is
used to present a DM proposal of MTA problem
in CMTA. The traditional PSO algorithm is also
simulated here to compare with the IPSO algo-
rithm. The constriction coefficient y is set to be
1. The assignment of all the missiles is

z=[2 8 7 3 5 6 1 5 13 10 12 10

1 13 14 13]

Fig. 4 illustrates the DM proposal of MTA
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problem. Based on the IPSO algorithm, the mis-
siles carried by our fighter 1 attack enemy fight-
ers 2, 8, 7 and 3. The missiles carried by our
fighter 2 attack enemy fighters 5, 6, 1 and 5.
The missiles carried by our fighter 3 attack enemy
fighters 13, 10, 12 and 10. The missiles carried
by our fighter 4 attack enemy fighters 1, 13, 14
and 13. The repeated numbers imply that these
enemy fighters threaten our fighters too much
and are attacked twice as a result. Some enemy
fighters are not attacked because their threat val-
ues do not reach the threat threshold value. With
the traditional PSO algorithm employed, the mis-
siles carried by our fighter 1 attack enemy fight-
ers 2,3, 3 and 7. The missiles carried by our
fighter 2 attack enemy fighters 1, 1, 14 and 5.
The missiles carried by our fighter 3 attack enemy
fighters 13, 13, 8 and 8. The missiles carried by
our fighter 4 attack enemy fighters 10, 10, 5 and
6. The IPSO algorithm based DM proposal of
MTA problem makes full use of the missiles and

destroys more threats.

Fig. 4 Results of DM for MTA

Fig. 5 shows the fitness of iteration process.
The fitness can decreased to 4. 391 5 when using
the IPSO algorithm, while the fitness is 4. 568 8
What's
more, the DM proposal with the IPSO algorithm

with the traditional PSO algorithm.

is faster than that with the PSO algorithm due to
the less iterations when using the IPSO algo-

rithm.

Fig. 5 Fitness of iteration process

5 Conclusions

DM problem for MTA in an air combat is
solved by a new improved PSO algorithm which is
parametric simple but effective and efficient. The
IPSO algorithm is used to minimize fitness func-
tion constructed by threat value. Coordinated at-
tack tactics is considered to adjust DM proposal to
reach better strike effect. It exhibits better per-
formance to CMTA in an air combat with the IP-
SO algorithm compared with the traditional PSO

algorithm.
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