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Abstract; Nowadays, energy consumption which closely contacts with environmental impacts of manufacturing
processes has been highly commented as a new productivity criterion. However, little attention has paid to the de-
velopment of process planning methods that take energy consumption into account. An energy-efficient process
planning model that incorporates manufacturing time and energy consumption is proposed. For solving the prob-
lem, an improved genetic algorithm method is employed to explore the optimal solution. Finally, a case study for

process planning is given. The experimental result generates interesting effort, and therefore allows improving the
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energy efficiency of manufacturing processes in process planning.
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0 Introduction

Nowadays, a new productivity criterion, en-
ergy efficiency has been highly commented in
manufacturing processes owning to the increasing
environmental awareness. Manufacturing compa-
nies have consumed a large amount of energy for
production, and they are responsible for approxi-
mately 33% of the global total energy consump-
tion; The associated amount of CO, emissions
generated by energy is 38 %!, Therefore, reduc-
ing environmental impacts like energy consump-
tion should be taken into account to improve en-
ergy efficiency of manufacturing processes.

Process planning, as one of the most signifi-
cant compositions in manufacturing processes,
plays a critical role in linking product design and
manufacturing. Issues on manufacturing cost and
time, like process planning, production criteria,
have been widely discussed. However, decreasing
energy consumption as one of objectives in

process planning has been limited.
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One of the most significant research works is
the work by Sheng and Srinivasan, who presented
multi-objective

an environmentally conscious

process planning approach based on manufactur-

2], and they further explored local

ing features
and global optimum process planning regarding
process energy consumption, process time, waste
mass and surface quality factors from the perspec-
tive of the micro and macro-planning level""*,
Ref. [ 5] designed a framework for environmental
process planning to evaluate configurations of a
product and its associated environmental impacts
during the advanced product quality planning
process. Ref. [ 6] developed a multi-objective
mathematical model for environmental supportive
process planning by considering cost, time and
environmental impact simultaneously. Ref. [ 7]
introduced energy consumption as one of objec-
tives of process planning for computer numerical
control (CNC) machining and confirmed that the
energy consumption as a new performance indica-

tor can be added to a multi-criteria process plan-
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ning system. Ref. [ 8] proposed a new process
planning approach that considers environmental
factors like carbon emissions, and a comparative-
ly green and economical process plan was ob-
tained. Ref. [9] discussed a methodology for the
process planning of energy-efficient machining
processes based on numerical simulations.
Ref. [10] presented an approach to estimate ener-
gy consumption and material flows that were in-
curred in a highly automated manufacturing sys-
tem considering multiple process plans. In sum-
mary, the efforts mentioned above provide an im-
portant starting point for exploring energy-effi-
cient process plan decisions which alleviate envi-
ronmental impacts while maintaining traditional
production criteria like time and cost. However,
it has some limitations in the literature. First,
much research is mainly concerned with the holis-
tic framework of process planning with environ-
mental-friendly design, and the implementation
of the specific strategies like decision-making op-
timization needs to be further investigated. Sec-
ond, process planning is also a combinatorial op-
timization problem and optimization algorithm
needs to be more effective and efficient by emplo-
ying intelligent meta-heuristic and searching ap-
proaches. Therefore, a bi-objective optimization
problem of minimizing the manufacturing time
and the total energy consumption is proposed in
the paper and an improved genetic algorithm
method is adopted to realize the optimization

process.

1 Problem Description

1.1 Representation of process planning

Process planning plays an important role in a

product design and manufacturing process
through the effective linkage of computer-aided
design (CAD) with computer-aided manufactur-
ing (CAM).

process planning

According to the definition of
[ the three major considera-
tions are required: (1) to generate operations of a
part based on features technology like feature ex-
traction; (2) to identify manufacturing resources

(e. g. machines and tools) available to the opera-

tions; (3) to determine the sequence of all the se-
lected operations according to some cost-effective
criteria like manufacturing cost and time. In
process planning, there exist the precedence con-
straints due to the geometric and manufacturing
interactions and technological requirements for a
part, including datum interactions, material-re-
moval interactions, feature priorities and fixed or-
der of machining operations''?!. All the opera-
tions sequencing of a part should satisfy these

precedence constraints.

1.2 Energy consumption modeling for process

planning

Due to the rising trend for environment-
friendly design and manufacturing, energy con-
sumption becomes a significant consideration in
process planning. A process plan for a part usual-
ly includes a series of operations, and each opera-
tion consumes an amount of energy. As is shown
in Fig. 1, one machine is allowed to process sever-
al operations, and the power profile for the ma-
chine consists of three energy consumption sta-
ges: start-up stage, idle stages and processing
stages. According to the energy-consuming char-
acteristic of one operation processed on one ma-
chine tool™* '™, the total energy consumption is
consisted of the following energy modules at the
three aforementioned stages. Assume that there
are n operations processed for a part on m ma-
chines.

P

—Processing t

\ \ \

[~ \
Start-up Idle Processing Idle

Fig. 1 Power profile of machine for the machining op-

erations

(1) When a machine tool is at the readiness

operation stage, the energy is consumed to acti-
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vate machine components (like the start-up of the
machine tool and spindle) and to ensure the oper-
ational readiness of the machine tool. The energy

consumption E;| can be expressed as

m

E =] Pod (D
i=1

where T, represents the startup time of machine i
and P, (z) the input power of machine i over
time.

(2) When a machine tool is at the idle run-
ning stage, the machine components that imple-
ment activities such as loading or unloading work-
piece, positioning and clamping, and changing
cutting tools have energy demand; In addition,
the machine tool that waits for the next operation
to be executed also consumes energy. The energy
demand E, can be calculated as

E,=>) > PsT} (2)
i=1 j=1
where T represents the idle time before the oper-
ation j is executed to process on machine i, and
P} the unload power when the operation j is exe-
cuted to process on machine i.

(3) When a machine tool is at the machining
operation stage, the energy is consumed to re-
move workpiece material and to maintain the nor-
mal operation of machine components. The re-

quired energy E; is described as follows

Ey= >, D> (Ps +aPy +B(PHHT, (3
i=1 j=1

where T3 represents the processing time when the
operation j is executed to process on machine i
and P§ the cutting power when the operation j is
executed to process on machine i. «,f represent
the coefficients of the load power, and they can be
calculated by means of the equations of linear re-
gression*],

In the process plan of a part, the total energy
consumption (E) is the sum of E,, E; and E;,
and it is expressed as

E=E +E,+E, €)
1.3 Manufacturing time modeling for process

planning

A mathematical model that minimizes the

manufacturing time is considered as one of the op-

timization objectives for process planning. Here,
the manufacturing time is defined as the maxi-
mum completion time of all jobs, namely,
makespan. Two constraints need to be satisfied:
one machine can process only one job at a time;
the different operations of one job cannot be per-
formed simultaneously. The objective function
can be described as

Ciax = min r?e%X( :7;; . X/j * Z;}) (5)
where C,,, is the makespan, Cjj; the completion
time of operation £, which is the ith position pro-
cessed on machine m, in the [th alternative
process plan of job j, and X, the integer variable
that has two possible values: 0 or 1. It is equal to
1 if the [th alternative process plan is picked for
job j. and 0 otherwise. Y}; is an integer variable
that has two possible values: 0 or 1. It is equal to
1 if operation % in the [th alternative process plan
of job j is the ith position processed on machine

m, and 0 otherwise.

2  Optimization Method

Genetic algorithm (GA) has been widely
used for objective optimization problems!®’. One
of its prominent advantages is able to quickly ob-
tain good results with high efficiency in a complex
solution space. In order to enhance the perform-
ance of GA, an improved GA is adapted for the

energy-efficient process planning in this section.
2.1 Population initialization

According to the precedence constraints be-
tween features for a part, a constraint matrix ap-
proach is developed to make each initial chromo-
some legal, and the procedure is described as fol-
lows.

Step 1  Construct an associated constraint
matrix A based on the precedence constraint rela-
tionship between features.

(1) Determine the number of precedence
constraints between features as the dimensions of
the row vector for A and make sure the first ele-
ment of each row for A is fixed and the sequence
of the remaining elements in each row are ran-

dom.
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(2) Determine the number of the feature ele-
ments for each precedence constraint and select
the maximum number as the column vector for
A. If the number of feature elements for a preced-
ence constraint is less than the maximum num-
ber, all the other elements are filled with 0.

Step 2 Query each element of the associated
constraint matrix A and record the feature ele-
ments which are not in A to create a row vector
B.

Step 3 Generate an initial process plan S, at
random, retain the position of each element for B
in §; and then replace the remaining positions of
S, with 0 to produce a non-associated constraint
process plan Sy;.

Step 4 Create an associated constraint
process plan S, based on the elements of the re-
maining positions of §, and regenerate S,, based
on the ordinal relation of the elements in A.

Step 5 Copy the elements of the new S;; in-
to the positions of §;; with 0 in order to obtain a
legal process plan S .

For example, an illegal process plan with
four precedence constraints given by Li, et al. %
is illustrated in Table 1. The associated con-
straint matrix A based on the precedence con-
straints between features and the non-associated
constraint row vector B can be obtained, and the
process of a feasible process plan is shown in
Fig. 2.

Table 1 Example of illegal process plan with four preced-

ence constraints

Original process F7-F14-F2-F10-F4-F11-F9-F12-F3-
plan F13-F6-F5-F8-F1

F5 and F9 are prior to F2 and F7

F8 and F12 are prior to F3, F5,F9

F3 is prior to F5

F10 is prior to F7

Constraint 1
Constraint 2
Constraint 3

Constraint 4

2.2 Fitness function

In this study, two following objectives are
considered as the fitness functions to explore the
energy-efficient process planning.

(1) Minimize the manufacturing time, name-
ly., makespan.

(2) Minimize the total energy consumption.

S=[F7 F14 F2 F10 F4 F11 F9 F12 F3 F13 F6 F5 F8 F1] (::m.e illegal process plan

The non-associated constraint row vector | B=[F1 F4 F6 F11 F13 F14]

S$,=[0F14 0 0 F4F11 000 F13 F6 0 0 F1]
S,~[F7 F2F10 F9 F12 F3 F5 8]

F5 |F2 F7 0
F9 |F7TF2 0
The associated constraint matrix | 4= F8 [ FS F3 79
F12 | F3 F5 F9
F3|F5 0 0
FI10[F7 0 0

Q:I The precedence constraints

S,=[F10 F12 F8 F9 F3 F5 F7 F2]

VLMY

§,=[0F1400F4F11000F13F6 00F1]
S8/=[F10 F14 F12 F8 F4 F11 F9 F3 F5 F13 F6 F7 F2 F1] (::IThe feasible process plan

Fig. 2 Example process of constraint matrix approach

2.3 Selection operator

In the algorithm, the rank-based selection
strategy has been employed for selection opera-
tor. In rank-based selection mechanism, the best
chromosomes are selected from the parents and
offspring individuals. In this way, as the rank-
based selection will only accept improvements,
the elitist population can be reproduced for the

next generation,
2.4 Crossover operator

Owning to illegal solutions generated in man-
y existing approaches, these solutions should be
transformed feasible plans using auxiliary meth-
ods like constraint adjustment method, penalty
function method and finite search space method,
and it is adverse to improve the searching efficien-
cy of the algorithms. Thus, a new crossover op-
eration method based on precedence constrain
module is proposed to avoid yielding infeasible so-
lutions. The procedure of crossover operation for
energy-efficient process planning is designed as
follows and a crossover instance is shown in
Fig. 3.

Step 1 Divide precedence constraint modules
for an initially generated process plan based on
the associated constraint matrix. The precedence
constraints between features which contact with
each other are defined as one precedence con-
straint module. There is no constraint relation-
ship between precedence constraint modules. In
addition, the non-associated constraint row vector

is defined as one of precedence constraint mod-
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ules.

Step 2 Pick a pair of parent individuals Par-
ent 1 and Parent 2, and initial two empty children
individuals Child 1 and Child 2.

Step 3 Select one precedence constraint
module at random., and append the elements of
the precedence constraint module included in Par-
ent 1 and Parent 2 to the same positions of the
corresponding individuals Child 1 and Child 2, re-
spectively.

Step 4 Append the remaining elements of
Parent 1 and Parent 2 to the remaining empty po-
sitions in Child 2 and Child 1 in sequence, respec-

tively.

Precedence constraint module: [ 4] 5] 7] 8 [12]13]

Parent 1: [ 1[13[ 2 [ 9] 3 [5] 6 [10]11]14] 7] 8 [12] 4]

Child1: [ 1[13] 9| 6] 2 [[5]10] 3 [14] 11] 7 [ 8]12] 4]

NN\

o] 3 [14]11]13] 4 ]12]

—

[ 6]10]11]14]13] 4 [12]

\
\

Parent1: | 1[13] 2 [ 9] 3 [5] 6 [10]11]14] 7 [ 8 ]12] 4]

Fig. 3 Crossover for a pair of chromosomes of energy-

efficient process planning
2.5 Mutation operator

A mutation operator, which satisfies a ran-

dom probability (i. e. mutation probability) based
on uniformly distributed rule, can be implemen-
ted to produce the solutions with greater fitness.
In the proposed algorithm, the mutation opera-
tion is required to randomly select two elements
and swap the elements in the two selected posi-
tions to obtain the resulting chromosome, and the
feasibility of the chromosome is ensured by means

of the constraint matrix approach.

3 Case Study

A prismatic part taken from the work of Li,

1. "7 is considered as a case study. There are

et a
fourteen defined manufacturing features need to
be realized, and there are twenty machining oper-
ations processed on five machines. The detailed
information of the features, operations, machines
and precedence constraints for the part is listed in
Tables 2, 3. Several experiments are carried out
for three different scenarios: (1) Makespan is
used as the only objective; (2) energy consump-

(3) both

makespan and energy consumption are used as the

tion is used as the only objective;

objective. Meanwhile, the improved genetic algo-
rithm (IGA) is compared with other algorithms
such as standard genetic algorithm (SGA) and

simulated annealing (SA).

Table 2 Technical specification for one part:'!?

Features Operations Mac‘hine Machining time for each candidate Precedenc-'-: CQnstraint
candidates machine / s descriptions
F1 Milling(O;) M2,M3, M4 40,40,30 F1 is the first operation
F2 Milling(O,) M2,M3, M4 40,40,30 F2 is prior to F10, F11
F3 Milling(O;) M2,M3, M4 20,20,15
F4 Drilling(O,) M1,M2,M3,M4 12,10,10,7.5
F5 Milling(Os ) M2,M3, M4 35, 35, 26.25 F5 is prior to F4, F7
F6 Milling (Og) M2,M3, M4 15, 15, 11.25 F6 is prior to F10
F7 Milling(O;) M2,M3,M4 30, 30, 22.5 F7 is prior to F8
F8 Drilling(Og) M1,M2,M3,M4 21.6, 18, 18, 13.5
Reaming(O,) M2,M3, M4 10, 10, 7.5
Boring(Oy) M2,M3,M4,M5 10, 10, 7.5, 12
9 Milling(Oy;) M2 ,M3,M4 15, 15, 11.25 F9 is prior to F10
F10 Drilling(Oy,) M1,M2,M3,M4 48, 40, 40, 30 F10 is prior to F11, F14
Reaming(O,;) M2,M3, M4 25, 25, 18.75

Boring(O,,)
F11 Drilling(Oy;)

Mz2,M3, M4, M5
M1,M2,M3, M4

Tapping(Oy;) M2,M3, M4
F12 Milling(Oy;) M2,M3, M4
F13 Milling(Oy5) M2,M3, M4
F14 Reaming(Oy) M2,M3,M4

Boring(Os)  M2,M3.M4,M5

25, 25, 18.75, 30
26.4, 22, 22, 16.5

20, 20, 15
16, 16, 12
35, 35, 26.25
12,12, 9
12,12, 9, 14. 4

F13 is prior to F4, F12
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Table 3  Data for unload power consumption of each ma-

chine

Machine number M1 M2 M3 M4 M5
Idle power/ kW 1.77 2.20 2.20 3.36 7.50

Based on IGA, the experimental results
under Scenarios (1), (2) and (3) are shown in
Figs.4, 5 and 6, respectively. In Scenario (1),
the best makespan is 337.5 s and the optimal se-
quencing of machining operations is found to be
O0,—0,—0,—0;, — 05, — 0, — 0, — O —
01— 05—0;;,—015— 05— 05— Oy — O; — Og —
0,—0,,—0;.
ergy consumption calculated is 1 134 kW -« s,

In addition, the corresponding en-

Given that the maximum completion time will be
allowed to delay without affecting delivery time,
and in Scenario (2), the optimal energy consump-
tion is 989. 24 kW « s and the corresponding
makespan is 452 s, which means a 12. 77% im-
provement in the energy consumption compared
with the manufacturing time as the single objec-
tive. The associated process plan is given as:
0,—0,;3—0;—0;,—0,;—0;;,—0;—0;—0;—
O,— 03— 0y —03—01,— 03— 01, — Oy — Oy —
O;;—0y. Furthermore, the relationship between
makespan and energy consumption has been
explored. As is shown Fig. 6, the experimental
result illustrates that the relationship between
makespan and energy consumption is prominently
conflicting and that decision-makers should make
a significant trade-off between them to implement
an energy-efficient process planning. On the one
hand, the energy consumption decreases as the
makespan increases. Thus, the decision-makers
can consider the manufacturing time without
affecting delivery time, ranging from 380 s to
410 s. Compared with the single performance
measure (i. e. , makespan), the average energy-
saving ratio is 6. 95%. On the other hand, there
is a significant amount of energy saving by assig-
ning the importance weights between the makes-
pan and energy consumption. For instance, the
importance weights of the makespan and energy
consumption are set to 0, 6 and 0. 4, respectively.

The makespan is 412. 5 s and the energy con-

sumption is 1 038 kW « s. It can obtain 8. 47 % of
energy saving and the optimal process plan is giv-
en by: O,—0,—0;—0;—0,;3,—0,,—0;,—0,—
Or—0;3—0,—0;—0—0—0; — O — Oy —
01— 0;;—0y5. At the same time, the proposed
algorithm is further compared with SGA and SA
in term of the optimum result for makespan. It is
obvious that IGA is quickly able to converge to
the optimal solution and outperforms SGA and
SA as shown in Fig. 7.

380
375
370
365
360
355
350
345
340

855 20 20 60 80 100

Iteration

Makespan / s

Fig. 4 Optimal result of makespan for Scenario (1)
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1300
1200
1100
1 000

205 20 20 60 80 100

Iteration

Energy / (kW * s)

Fig. 5 Optimal result of energy for Scenario (2)

11401
1120}
1100}
1080} .

1060} e
1040t

Energy / (kW * s)

10201
1000

.
980 L L . L . . )
320 340 360 380 400 420 440 460
Makespan / s

Fig. 6 Plots of energy versus makespan for Scenario (3)
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